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Goals and Challenges

@ Goal: Segment and count number of healthy and
tumor cells, in slides from patients with lung cancer.

@ Real-world application: Perform genetical testing on
cells that have cancer |

€ Challenge: Model decreases in accuracy when tested
on different hospitals or slides scanner.

@ |dea: Review ways to counter overfitting, such as data
augmentation, Out of Distribution (OoD) estimation,
representation learning etc.

Generalize cancer cell detection model to new hospitals and scanners
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Experiments and hyperparameter search

® Slides are obtained from real-world
patients, labeled by doctors and .

experts in Japan. | AT ==
@ Hyperparameter tunning and B T U R R S S

positive augmentations were e
identified usings loggers such as
weight & biases and tensorboard
hyperparameter search.

Hundreds runs done to validate and find hyperparameters
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Data Augmentation Binary Search
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Understanding which augmentations improved the model
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Data Augmentation Binary Search
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Data Augmentation Binary Search
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Data Augmentation Binary Search
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Data Augmentation Binary Search
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Data Augmentation Binary Search
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Understanding which augmentations improved the model
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1/ 5 - Augmentation with changes in histological stains

@ Context: Cell slides are obtained by using a combination of
two histological stains: hematoxylin and eosin.

@ Idea: Make the model more robust against different amounts
of histological stains, which may vary among datasets. The
Intuition is to replicate the change in light absorption.

@ Technical: Changing the quantity of histological stains in slides
& Change of coordinates in the vector space directed by
hematoxylin and eosin.

Augmentation by varying the amount of "ink" applied to slides
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1/ 5 - Augmentation with changes in histological stains

11

hematoxylin

o
»

Increase of F1 accuracy.
Classification: 0.62 — 0.71

eosin Detection: 0.88 — 0.90

Augmentation by varying the amount of "ink" applied to slides
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2 / 5 - Augmentation with elastic transformations

& Context: Elastic transformations have been
shown to be an useful augmentation

techniques for medical segmentation tasks. [1] I nrnrn

€ Results: Overall the model performs worse
with such transformations. An explanation is
that cells are not affected by such distortions.

(a) Original (b) Deformed

Augmentation by "stretching” the slides randomly
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3 / 5 - Posterior Network for detecting out of distribution samples

N(0,1) N(0,1) N(0,1)

€ Context: The model performs worse on . ®

samples or datasets not seen a train time. —

i)
. fo(x) v

¢ :cdea. Usetthet Posigrlo;NetW%rI;r?oo’I[.el [2] t E/\“.y//”‘*

or uncertainty estimation and detecting ou o) | e

f . o o y .g / \ o

of distribution samples, that may require

further tunning. o

o

Input Latent space Prediction

€ Results: Model correctly predicts higher
uncertainty for out of training examples.

Cells slide a Prediction Cells Prediction Uncertainty
0

€ Future work: Think of a way to exclude
samples that have high uncertainty.

0 50 100

Detecting samples that look "unusual”
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4 / 5 - Build a dataset representation encoder

& Context: Datasets have different
characteristics due to external factors
and machine calibrations.

&® |dea: Use those variations to our

Classification head

advantage by training a representation

{Hospital 1, Hospital 2,
Dataset Embedding Scanner 1, Scanner 2 etc.}

learner with a classification task.

@ Technical: The representation encoder is
obtained by training a ConvNet or
LeNet on a classification task, then
stripping out the classification layer.

Building a representation of the dataset features

14
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4 / 5 - Build a dataset representation encoder

15

Classification head

Dataset Embedding

o>

{Hospital 1, Hospital 2,

Scanner 1, Scanner 2 etc.}

Classifier F1 accuracy of 0.92 on test

Building a representation of the dataset features
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4 / 5 - Build a dataset representation encoder

Classification head

{Hospital 1, Hospital 2,
Dataset Embedding Scanner 1, Scanner 2 etc.}

Slide Embedding

Building a representation of the dataset features
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4 / 5 - Build a dataset representation encoder

Dataset Embedding

Y

Dataset Embedding

Slide Embedding

Slide Embedding

Mixed embedding

So far, similar performance on test set

_ w/ encoder w/o encoder

Classification F1  0.59 0.71

Detection F1 0.61 0.69

Building a representation of the dataset features

17
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5 /5 - Conclusions and future research

€ Medical ML rises new challenges in term of robustness and data
generalization.

€ Domain expertise brings critical knowledge from their field, see stain
augmentation.

€ Building dataset representation through self-supervised or weakly-
supervised learning may be a solution.

€ Recent works on image-to-image translation seems to go in that
direction.

Model generalization is hard!
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