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◆Goal: Segment and count number of healthy and 

tumor cells, in slides from patients with lung cancer.

◆Real-world application: Perform genetical testing on 

cells that have cancer

◆Challenge: Model decreases in accuracy when tested 

on different hospitals or slides scanner.

◆ Idea: Review ways to counter overfitting, such as data 

augmentation, Out of Distribution (OoD) estimation, 

representation learning etc.

Goals and Challenges

Generalize cancer cell detection model to new hospitals and scanners
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◆ Slides are obtained from real-world 

patients, labeled by doctors and 

experts in Japan.

◆Hyperparameter tunning and 

positive augmentations were

identified usings loggers such as 

weight & biases and tensorboard

hyperparameter search.

Experiments and hyperparameter search

Hundreds runs done to validate and find hyperparameters
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Data Augmentation Binary Search

Understanding which augmentations improved the model
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◆Context: Cell slides are obtained by using a combination of 

two histological stains: hematoxylin and eosin.

◆ Idea: Make the model more robust against different amounts 

of histological stains, which may vary among datasets. The 

intuition is to replicate the change in light absorption.

◆ Technical: Changing the quantity of histological stains in slides 

⇔ Change of coordinates in the vector space directed by 

hematoxylin and eosin.

1 / 5 – Augmentation with changes in histological stains

Augmentation by varying the amount of "ink" applied to slides
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1 / 5 – Augmentation with changes in histological stains

Augmentation by varying the amount of "ink" applied to slides

hematoxylin

eosin

Increase of F1 accuracy.

Classification: 0.62 → 0.71

Detection: 0.88 → 0.90
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◆Context: Elastic transformations have been 

shown to be an useful augmentation 

techniques for medical segmentation tasks. [1]

◆ Idea: Variation in shape and angles of the cells 

may need to be accounted for during training.

◆Results: Overall the model performs worse 

with such transformations. An explanation is 

that cells are not affected by such distortions.

2 / 5 – Augmentation with elastic transformations

Augmentation by "stretching" the slides randomly
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◆ Context: The model performs worse on 
samples or datasets not seen a train time. 

◆ Idea: Use the Posterior Network model [2] 
for uncertainty estimation and detecting out 
of distribution samples, that may require 
further tunning.

◆ Results: Model correctly predicts higher 
uncertainty for out of training examples.

◆ Future work: Think of a way to exclude 
samples that have high uncertainty.

3 / 5 – Posterior Network for detecting out of distribution samples

Detecting samples that look "unusual"



NEC Group Internal Use Only© NEC Laboratories America 202114

◆Context: Datasets have different 
characteristics due to external factors 
and machine calibrations.

◆ Idea: Use those variations to our 
advantage by training a representation 
learner with a classification task.

◆ Technical: The representation encoder is 
obtained by training a ConvNet or 
LeNet on a classification task, then 
stripping out the classification layer.

4 / 5 – Build a dataset representation encoder

Building a representation of the dataset features



NEC Group Internal Use Only© NEC Laboratories America 202115

4 / 5 – Build a dataset representation encoder

Building a representation of the dataset features

Classifier F1 accuracy of 0.92 on test
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4 / 5 – Build a dataset representation encoder

Building a representation of the dataset features

So far, similar performance on test set

w/ encoder w/o encoder

Classification F1 0.59 0.71

Detection F1 0.61 0.69
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◆Medical ML rises new challenges in term of robustness and data 

generalization.

◆Domain expertise brings critical knowledge from their field, see stain

augmentation.

◆Building dataset representation through self-supervised or weakly-

supervised learning may be a solution.

◆Recent works on image-to-image translation seems to go in that

direction.

5 / 5 – Conclusions and future research

Model generalization is hard!
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Thank you!
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