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Abstract

Transformers are powerful models that can capture long-range dependencies between data using
an attention mechanism. However, applying transformers to medical problems poses challenges
due to the high-resolution and complexity of pathology images, as well as the scarcity and
noise of labels. In this thesis, we have provided a comprehensive overview of the state-of-the-
art transformers method for analyzing high-resolution pathology images, using the glioblastoma
dataset IvyGAP and the renal cancer dataset as case studies. We have discussed how to pre-
train transformers using self-supervised learning methods that can learn useful representations
from unlabeled data. We have also explored how to �nd regions of interest within a whole
slide image using di�erent levels of supervision: self-supervised, weakly supervised and strongly
supervised. We have demonstrated that transformers can provide a semantic understanding of
the data and outperform convolutional-based models on downstream tasks such as classi�cation
and segmentation. Finally, we employ posterior networks to estimate the aleatoric and epistemic
uncertainty of ViT predictions and evaluate their usefulness for clinical decision making. We
propose a novel method to �lter potentially mislabeled data in order to make more accurate and
con�dent predictions. Our experiments show that our methods achieve state-of-the-art results
on various glioblastoma tasks and provide meaningful insights into the behavior and limitations
of ViTs for medical machine learning.

Keywords: Vision Transformers, Self-Supervised Learning, Uncertainty Estimation, Glioblas-
toma, Regions of Interest.



Contributions

This thesis advances the �eld of medical image analysis using transformers in several ways. Be-
sides providing a comprehensive review of transformer methods and their application to medical
datasets, we have applied them to the IvyGAP dataset and investigated the issue of potential
label noise. To the best of our knowledge, we are the �rst to perform such an analysis on IvyGAP
and to highlight the limitations of this dataset for some tasks that depend on the count of tumor
cells. We have also presented evidence for why some labels might be inaccurate or inconsistent
based on molecular pro�les and histological features. Moreover, we are the �rst to use posterior
networks as a technique to estimate label and prediction uncertainty on IvyGAP. Finally, we have
proposed a novel method to �lter out potentially mislabeled data points in order to improve the
accuracy and con�dence of our predictions. We hope that this thesis will inspire further research
in this area and contribute to the development of more reliable and robust medical image analysis
tools.
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1 Datasets and Motivations

1.1 Introduction

The Yu Lab of the Department of Bioinformatics at Harvard Medical School applies Arti�cial
Intelligence to Quantitative Pathology. The lab analyzes whole slide images and patient out-
comes to better understand, predict and evaluate the prognosis of patients with lung (Yu, Lee,
et al. 2020), renal (Marostica et al. 2021), breast (Ektefaie et al. 2021), or ovarian (Yu, Hu,
et al. 2020) cancer. Whole slide images pose many challenges for their studies. First, they
require expensive scanners that produce images with multiple gigabytes in size. This makes
their processing di�cult, as one needs to extract insights from the whole slide without losing
the details at higher magni�cation. Second, they involve a costly and tedious acquisition process
that limits the availability of datasets for some diseases. Moreover, histopathology slides are
stained with hematoxylin and eosin, which a�ects their coloration depending on the staining
procedure.

The study of histopathology slides reveals many di�culties in Medical Machine Learning. Datasets
are scarce and hard to label for some diseases. In this chapter, we will introduce the datasets used
in this thesis and the problems they present. The datasets in this chapter are relevant to all the
chapters of this thesis, as the techniques we present are useful for understanding histopathology
slides. Speci�cally, we will focus on the Glioblastoma dataset Ivy Gap (Puchalski et al. 2018,
IvyGap), and a dataset of renal cancer slides captured by a cell-phone.

1.2 Glioblastoma Dataset: IvyGAP

Glioblastoma is a type of cancer that is known to be one of the most aggressive. Beginning in the
brain is the most lethal malignant brain tumor. It represents 15% of all brain tumors and even
for patients receiving aggressive treatment, the median survival is 12-15 months. It is estimated
that more than 200'000 individuals in the world will succumb to glioblastoma every year. The
�ve-year survival rate for glioblastoma patients is only 6.8%, and there are no known methods
to prevent glioblastoma (Glioblastoma n.d.).

In 2019, the Allen Institute for Brain Science, and the Ben and Catherine Ivy Center for Ad-
vanced Brain Tumor Treatment have introduced the Ivy Glioblastoma Atlas (IvyGAP), a publicly
available atlas of Glioblastoma patients, their segmented whole slide tumor samples and their
clinical data. The goal of the IvyGap project is to provide scientists and physicians with online
resources dedicated to the understanding of Glioblastoma. Overall, the Ivy GAP cohort con-
sisted of 41 patients (table S1), and their 42 tumors were used to generate 440 tissue blocks,
270 transcriptomes, 11,500 machine learning (ML)-annotated H&E images registered to 23,000
ISH images, 400 MRI scans, and supporting longitudinal clinical information (Puchalski et al.
2018).

In this report we will focus on the set of WSI and their corresponding segmentation map, in
particular, we will try to identify the insights that this dataset can provide on Glioblastoma
while trying to solve some of the challenges that this dataset presents.

The original images were obtained using a ScanScope scanner and directly saved as SVS im-
ages, each of them being approximately 5 GB. The images and their segmentation map were
then converted to JPEG 2000 �le format and compressed at a rate of 0.8 to 400 MB per

1



1 Datasets and Motivations

Figure 1.1: Example of WSI from the IvyGAP dataset (left) and the corresponding segmenta-
tion ground truth (right). The segmentation map was obtained in a semi-automatic
manner.

image. The segmentation maps were obtained using Decision Forests to detect the following
features:

� Leading Edge (LE): The outermost boundary of the tumor, where the ratio of tumor to
normal cells is about 1-3/100,

� In�ltrating Tumor (IT): It is the intermediate zone between the Leading Edge (LE) and
Cellular Tumor.

� Cellular Tumor (CT): Tissue where the ratio of tumor cells to normal cells is about 100/1
to 500/1.

� Necrosis (CTne): Dead or dying tissue, marked by the absence of crisp cytological archi-
tecture.

� Background (Background): Background of the slide.

(a) Leading Edge (b) In�l. Tumor (c) Cellular Tumor (d) Necrosis (e) Background

Figure 1.2: 5 classes in the subsample IvyGAP dataset

The distribution of the 5 classes of IvyGAP is detailed bellow in table 1.2.

Glioblastoma is a highly aggressive and lethal brain tumor that a�ects millions of people world-
wide. Understanding the molecular and cellular mechanisms of glioblastoma development and
progression is crucial for developing e�ective therapies and improving patient outcomes. How-
ever, glioblastoma is a heterogeneous disease that exhibits spatial and temporal variations in gene
expression, histology, and response to treatment. Therefore, a comprehensive atlas of glioblas-
toma that integrates multiple levels of data across di�erent regions of the tumor is needed to
reveal its complexity and diversity.

2



1.3 Renal Cancer dataset from a cell-phone

Class Train Val Test

Leading Edge 8.08% 11.1% 1.88%

In�ltrating Tumor 12.1% 7.20% 15.9%

Cellular Tumor 49.5% 39.6% 51.5%

Necrosis 21.9% 34.7% 22.9%

Background 8.15% 7.41% 7.62%

Table 1.1: Distribution of the 5 classes in the IvyGAP dataset

The Ivy Glioblastoma Atlas Project (IvyGAP) is an ambitious initiative that aims to provide
such an atlas by combining high-resolution histological images, gene expression data from in
situ hybridization (ISH) and RNA sequencing (RNA-Seq), and clinical and genomic informa-
tion for each donor and tumor. IvyGAP is a valuable resource for researchers, clinicians, and
patients who want to explore the anatomic and genomic basis of glioblastoma. By allowing
users to visualize and compare gene expression patterns across di�erent regions of the tumor,
IvyGAP can help identify novel biomarkers, therapeutic targets, and molecular subtypes of
glioblastoma.

However, IvyGAP also poses some challenges for data analysis and interpretation. One of them
is the potential presence of mislabeled data due to the semi-automated annotation process that
was used to assign gene expression values to di�erent anatomical structures. The annotation
process involved using a Random Forest classi�er trained on expert-labeled samples to predict
the labels for unlabeled samples based on their ISH intensity values. However, this approach
may introduce errors due to noise, outliers, or inconsistencies in the training data or the classi�er
parameters. Therefore, it is important to assess the quality and reliability of the IvyGAP dataset
before using it for downstream applications.

1.3 Renal Cancer dataset from a cell-phone

Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer, accounting for 2-3%
of cancers in humans. RCC can be divided into three main subtypes based on cell appearance:
clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). These three
subtypes make up more than 90% of all RCC cases. Clear cell RCC is the most dangerous,
while papillary and chromophobe RCCs have higher survival rates. The classi�cation of RCC
subtypes is important in clinical practice due to the growing use of innovative treatments, which
necessitates new methods for identifying subtypes. RCC is associated with several risk factors,
such as smoking, certain pain medications, previous bladder cancer, obesity, high blood pressure,
exposure to certain chemicals, and a family history of the disease. Treatment options for RCC and
TCC include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy.
In 2018, approximately 403,300 new cases of kidney cancer were reported worldwide, resulting
in 175,000 deaths. The dataset studied at the Yu Lab was directly taken by members of the lab,
who manually scanned 4694 slides.

Microscopes are powerful tools that can reveal the microscopic structures and processes of various
biological and physical phenomena. However, conventional microscopes are often expensive,
bulky and require specialized training and maintenance. Therefore, studying a dataset of pictures
taken from a cellphone in a microscope can have various motivations depending on the research
question and the domain of application.

3



1 Datasets and Motivations

(a) Clear cell RCC (b) Chromophobe RCC (c) Papillary RCC

Figure 1.3: Renal Cell Carcinoma

For example, some researchers may want to study how cellphone microscopes can provide low-
cost, portable and accessible alternatives to conventional microscopes for various purposes such
as education, diagnosis and research. Others may want to study how cellphone microscopes can
enable di�erent contrast mechanisms such as bright-�eld, dark-�eld and �uorescence imaging
that can enhance the visualization of di�erent features in the specimens1. Yet others may want
to study how cellphone microscopes can be integrated with machine learning techniques such as
image processing, segmentation and classi�cation that can automate the analysis of the images
and provide quantitative measurements.

By studying a dataset of pictures taken from a cellphone in a microscope using machine learn-
ing techniques such as convolutional neural networks, edge detection and feature extraction,
researchers can exploit the potential of cellphone microscopes for various scienti�c and practical
applications that can bene�t society.

Class Train Val Test

ccRCC 25.05% 24.78% 23.32%

chRCC 32.29% 33.16% 32.69%

pRCC 42.65% 42.04% 43.98%

Table 1.2: Distribution of the 3 classes in the Renal Cancer dataset

4



2 Self-Supervised Learning for Transformers

pre-training on unlabeled dataset

2.1 Introduction

Ever since their introduction, Deep Neural Networks have been shown to be powerful tool in
solving Computer Vision tasks, such as image classi�cation, object detection, semantic segmen-
tation and many more. Their impressive performance and �exibility has allowed them to be used
in many applications, where more traditional methods would have failed in the past. However,
the success of Deep Neural Networks (DNNs) is not only due to their ability to learn complex
representations of the data, but also due to the large amount of data they are trained on. In
fact, the performance of DNNs is highly dependent on the amount of data available for training;
up to a certain point will plateau. This diminishing return, combined with the expensive cost
of labeling data, has led to the development of self-supervised learning methods, which allow
training DNNs on large unlabeled datasets.

Self-Supervised learning methods are based on the idea that the data itself contains enough
information to learn a good representation of the data. This representation can then be used in
a variety of downstream tasks, as long as the data is similar to the one used for pre-training.
Medical datasets rise above in complexity and labeling cost, and present new challenges in term
of patient privacy. This makes self-supervised learning methods a promising approach for medical
image analysis, as they allow training DNNs on large unlabeled datasets, while preserving patient
privacy.

In this Chapter, we will introduce Self-Supervised Learning methods and their application to
medical image analysis. We will see how much pre-training methods can be used to improve the
performance of the model on downstream tasks while also providing a better understanding of
the dataset. We will compare the performance and costs of pre-training methods on large-scale
medical slide datasets, and motivate the use of general pre-trained models on SSL algorithms for
downstream tasks.

2.2 Vision Transformer

2.2.1 Introduction

Self-attention-based architectures, particularly Transformers Vaswani et al. 2017, have become
the go-to model in natural language processing (NLP). The common approach is to �rst pre-
train on a large corpus of text, and then �ne-tune on a smaller, task-speci�c dataset. Thanks to
the scalability and computational e�ciency of Transformers, it is now possible to train models
of unprecedented size. However, in computer vision, convolutional neural networks (CNNs)
remain the dominant architecture. Recently, there have been attempts to combine CNNs with
self-attention J. Chen et al. 2021, and some models even replace convolutions entirely. While
these models have the potential for e�ciency, they have yet to be e�ectively scaled on modern
hardware accelerators due to the use of specialized attention patterns.

In this section, we will introduce the mechanisms of transformers and their recent generaliza-
tion to computer vision (Dosovitskiy et al. 2021). We will detail the self-attention mechanism
and their ability to form strong backbone for computer vision tasks. We will also introduce
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

the Vision Transformer (ViT) architecture, and its ability to scale to large datasets and large
models.

This section will be particularly relevant for this chapter as it will be the backbone of the self-
supervised learning methods, in the following chapter for the interpretability of its attention
heads and the last chapter when estimating uncertainty of predictions.

2.2.2 Self-Attention using Scaled Dot-Product attention

The goal of Transformers in Shah et al. 2017 is to learn a representation of the input sequence
that is invariant to the order of the elements in the sequence. This is achieved by using self-
attention, which is a mechanism that allows a model to focus on di�erent positions of the input
sequence to compute a representation of that position. Self-attention mechanisms are particu-
larly relevant in problems where sequential computation is expensive, like in natural language
processing.

Self-attention, also known as intra-attention, is a mechanism used to analyze a single sequence
by relating di�erent positions within it. This method has been proven e�ective in various tasks
such as comprehension, summarization, entailment and learning sentence representations that
are independent of a speci�c task

Figure 2.1: Scaled Dot-Product Attention

Mathematical Formulation

In the Scaled Dot-Product Attention mechanism, the queries, keys, and values are used to
compute a representation of a sequence. The queries and keys are used to calculate the dot
products, which represent the similarity or relevance between them. The values are then used
to weight the importance of each element in the sequence based on the dot product similarities.
Let Q be the matrix of queries, K be the matrix of keys, and V be the matrix of values. The
scaled dot-product attention is de�ned as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

The dot product is a measure of similarity between two vectors. In the context of attention, the
dot product is used to calculate the similarity between the queries and keys, which are used to
determine the importance of the values. The dot product is calculated by taking the sum of the
element-wise product of the queries and keys. The dot product is then scaled by 1/sqrt(dk),
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2.2 Vision Transformer

where dk is the dimension of the queries and keys, to prevent the dot products from becoming
too large and causing issues with the softmax function.

Intuition behind Self-Attention

In essence, the queries are used to determine what information is needed from the sequence, the
keys are used to determine where that information is located in the sequence, and the values are
used to provide that information. The dot product similarity between the queries and keys is
used to weight the importance of the values, which allows the attention mechanism to focus on
the most relevant parts of the sequence.

To better understand the self-attention mechanism, consider the following example. Consider
the following sentence as an example: "The cat sat on the mat."

When passing this sentence through a self-attention head, each word in the sentence will be
represented as a vector, and these vectors will be used as the input to the self-attention mecha-
nism.

The queries, keys and values are all derived from the input word vectors. The queries represent
the words we want to attend to, the keys represent the words that the attention mechanism will
compare the queries to, and the values are the word vectors that will be used to construct the
output representation.

For example, let's say we want to attend to the word "cat" in the sentence. The query vector for
"cat" would be used to compare against the key vectors for all the other words in the sentence.
The dot product between the query vector for "cat" and the key vectors for the other words would
then be calculated. These dot products are then used as weights to weigh the value vectors of the
other words. The resulting weighted sum of value vectors represents the output representation
of "cat" in the sentence.

2.2.3 Multi-Head Attention

Multi-head attention is an extension of the self-attention mechanism in which multiple attention
heads are used to compute di�erent representations of the input sequence. Each head indepen-
dently computes a weighted sum of the input values, where the weights are determined by a
compatibility function of the input queries, keys, and values. These representations are then
concatenated and projected to obtain the �nal output representation. The main intuition be-
hind multi-head attention is that it allows the model to attend to di�erent parts of the input
sequence, with each head potentially learning a distinct type of attention. This allows the model
to capture more �ne-grained information and to attend to di�erent parts of the input in a more
nuanced way. Additionally, by having multiple heads, the model can learn a more diverse set of
representations, which can be bene�cial for downstream tasks. In Chapter 3, we will show how
the DINO algorithms can provide segmentation-like map through the attention heads of the ViT
backbone, how this can be used to �nd regions of interest in whole slide images and interpret
model predictions.
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

Figure 2.2: Multi-Head Attention

2.2.4 Vision Transformers (ViT): scaling-up to images

First introduced for NLP tasks, Transformers architecture have rapidly shown strong perfor-
mance and grown in popularity compared to sequential models. The Self-Attention mechanism
was motivated by the need to express intra-relevancy within a sentence, while also having the
capacity to scale-up to larger set of tokens. Because of Transformers performance and scala-
bility, larger models models are now trainable at scale and there is still no sign of saturating
performance.

However, applying self-attention to images poses a challenge as it requires each pixel to attend to
all other pixels, resulting in a cost that is quadratic to the number of pixels and is infeasible for
realistic input sizes. To address this, Dosovitskiy et al. 2021 introduced minimal modi�cations
to the original Transformers for NLP, and they treated an image as a sequence of patches. Each
patch is then considered as a token, turned into an embedding and fed into the Transformer.
The authors showed that this approach is able to scale-up to images of 16x16 pixels, and that it
can be trained end-to-end for supervised classi�cation.

Architecture of ViT

The traditional transformer for NLP receives a 1D sequence of tokens embedding. To process
2D images, the authors divide the original image x ∈ RH×W×C into a sequence of �attened 2D
patches xp ∈ RN×(P 2·C) where each patch is of size P ×P , C is the number of channels and then
N = HW/P 2.

In comparison to convolutional neural networks (CNNs), Vision Transformer (ViT) exhibits a
lower level of image-speci�c inductive bias. While CNNs rely heavily on assumptions of locality,
two-dimensional neighborhood structure, and translation equivariance, which are hard-coded into
each layer throughout the entire model, ViT employs a more �exible approach, where only the
multilayer perceptron (MLP) layers maintain these assumptions, while the self-attention layers
are able to learn global patterns in the image. The utilization of the two-dimensional neighbor-
hood structure in ViT is limited to the initial stages of the model, where the image is divided into
smaller patches, and during �ne-tuning for images of varying resolutions. Additionally, the posi-
tion embeddings in ViT do not contain any prior knowledge about the 2D positions of the patches,
thus the model is required to learn the spatial relations from the data.
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2.2 Vision Transformer

Figure 2.3: Vision Transformer architecture, where the input image is divided into a linear
sequence of square patches. Each patch is then projected into a vector of �xed
dimensionality. The sequence of patches is then fed into a Transformer encoder.

ViT achieves better performance than CNNs on benchmarks

In their study (ibid.), the largest models, ViT-H/14 and ViT-L/16, are compared to state-of-the-
art CNNs from the literature. The �rst point of comparison is Big Transfer (BiT) (Kolesnikov
et al., 2020), which utilizes supervised transfer learning with large ResNets. The second point of
comparison is Noisy Student (Xie et al., 2020), a large E�cientNet trained using semi-supervised
learning on ImageNet and JFT300M with the labels removed. At that time, Noisy Student holds
the state of the art on ImageNet and BiT-L on other datasets reported. All models were trained
on TPUv3 hardware. The smaller ViT-L/16 model pre-trained on JFT-300M outperforms BiT-
L (which is pre-trained on the same dataset) on all tasks, while requiring substantially less
computational resources. The larger model, ViT-H/14, further improves performance, partic-
ularly on more challenging datasets such as ImageNet, CIFAR-100, and the VTAB suite. It
is worth noting that this model still took substantially less compute to pre-train than prior
state of the art, although pre-training e�ciency may be a�ected by multiple parameters, such
as training schedule, optimizer, weight decay, etc. Lastly, the ViT-L/16 model pre-trained on
the public ImageNet-21k dataset performs well on most datasets and requires fewer resources to
pre-train; it could be trained using a standard cloud TPUv3 with 8 cores in approximately 30
days.

ViT-H/14 BiT-L Noisy Student

(ViT-H/14) (ResNet152x4) (E�cientNet-L2)

ImageNet 88.55 ± 0.04 87.54 ± 0.02 88.4/88.5

ImageNet ReaL 90.72 ± 0.05 90.54 90.55

CIFAR-10 99.50 ± 0.06 99.37 ± 0.06 -

CIFAR-100 94.55 ± 0.04 93.51 ± 0.08 -

TPUv3-core-days 2.5k 9.9k 12.3k

Table 2.1: Comparison of ViT with other models on ImageNet and CIFAR-10 benchmarks. ViT
achieves higher accuracy on benchmark datasets while requiring fewer resources to
pre-train.
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

2.3 Self-Supervised Learning

2.3.1 Introduction

Supervised methods may be the most common when we refer to Machine Learning models. These
methods make use of labeled data to learn and predict on future unlabeled data. They provide
the ability to learn rich patterns provided a large amount of labeled data, and has made deep
neural networks a compelling approach in the majority of computer vision and natural language
processing tasks.

Self-Supervised Learning (SSL) is a Machine Learning paradigm that aims to learn from unlabeled
data. Self-supervised learning is a machine learning approach that involves training a model to
perform a task using only unlabeled data. In this type of learning, the model is given a set of
inputs and must predict some properties of the inputs, such as the missing pieces in a jigsaw
puzzle or the rotation angle of an image. This is in contrast to supervised learning, where the
model is given both input data and corresponding labeled outputs, and the goal is to learn a
mapping from the inputs to the outputs.

One advantage of self-supervised learning is that it can be used to learn useful representations
of the data even when labeled data is scarce. This is because the model is able to learn from
the inherent structure of the data itself, rather than relying on explicit labels provided by a
human annotator. This can make self-supervised learning particularly useful for tasks where it
is di�cult or expensive to obtain large amounts of labeled training data.

Self-supervised learning has been applied to a variety of tasks in natural language processing and
computer vision, including language translation, image classi�cation, and object detection. It
has also been used to pre-train models that are then �ne-tuned on a supervised task, resulting in
improved performance compared to training on the supervised task alone.

In this section, we will introduce the main self-supervised learning methods, and provide a
detail explanation of DINO, a form of knowledge distillation that can provide great pre-trained
models.

2.3.2 Motivation and General Approach

Self-supervised learning aims to learn visual features from unlabeled data by using pretext tasks,
which are designed to be solvable by neural networks. These tasks allow for the training of
networks without the need for expensive and time-consuming human annotations. Common
examples of pretext tasks include colorizing grayscale images, image inpainting, and image jigsaw
puzzles (Zhang et al. 2016). These tasks share the property of capturing visual features through
the weights of the neural networks and generating pseudo labels based on the attributes of the
data.

In this process, a pretext task is assigned to a neural network, usually an encoder, which is trained
to solve it. The task's pseudo labels are generated automatically from the data's attributes.
Once the self-supervised training is complete, the visual features learned can be transferred to
downstream tasks, particularly in situations where there is limited data available, to enhance
performance and mitigate over�tting. Typically, shallow layers capture general low-level features
like edges, corners, and textures while deeper layers capture task-speci�c high-level features. As
a result, only the visual features from the �rst few layers are transferred during the supervised
downstream task training phase.
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2.3 Self-Supervised Learning

In the context of self-supervised learning (SSL), a downstream task refers to a task that uses
the features learned through the SSL process as input. These tasks can be any type of machine
learning task that requires visual features, such as object detection, image classi�cation, or
segmentation. In medical tasks, downstream tasks could include tasks like disease classi�cation,
lesion segmentation, or anatomical landmark detection. These tasks often require a large amount
of annotated data, which can be expensive and time-consuming to acquire. By using the visual
features learned through SSL, the performance of these tasks can be improved and the need
for large amounts of annotated data can be reduced. Additionally, the learned features can be
used to pre-train models for medical tasks, which can help to overcome over�tting and improve
performance on small datasets.

Because no human annotations are required for self-supervised learning, it can be used to train
models on large amounts of unlabeled data. This can be particularly useful in medical applica-
tions, where it can be di�cult or expensive to obtain large amounts of labeled data. For example,
in the context of medical image analysis, self-supervised learning can be used to train models on
large amounts of unlabeled medical images, which can then be used to improve the performance
of downstream tasks that require labeled data.

2.3.3 Mathematical Formulation

Neural Networks can learn visual features from labeled or unlabeled data. Both approach have
their advantages and disadvantages. In the case of labeled data, the network can learn the visual
features that are relevant to the task, but it requires a large amount of labeled data. In the case
of unlabeled data, the network can learn visual features from the data itself, but it requires a
large amount of unlabeled data. In both cases, the networks have to be trained through a loss
minimization process, which is usually done by backpropagation. Hence we can formulate the
training process for Supervised and Self-Supervised Learning.

Supervised Learning Formulation

Supervised Learning involves the use of dataset X where each data point xi has a corresponding
human annotated label yi. The goal of supervised learning is to learn a function f that maps
the data xi to the label yi. The function f is usually a neural network, and the training process
is done by minimizing the loss function L. Let D the dataset of size N , where D = {(xi, yi)}Ni=1.
The loss value of a neural network over a dataset is de�ned as:

L(D) =
N∑
i=1

d(f(xi), yi) (2.2)

The distance function d(xi, yi) is usually de�ned as a distance that will di�er depending of the
problem (norm L2, norm L1 etc.). The training process is done by minimizing the loss function
L through backpropagation.

Self-Supervised Learning Formulation

Recently, several self-supervised learning methods for visual feature learning have been developed
without the use of human-annotated labels (Mahendran et al. 2018, Sayed et al. 2019). These
methods are also referred to as unsupervised learning. Unlike supervised learning methods, which
require a data pair of (xi, yi), self-supervised learning is trained with data xi and its pseudo
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

label Pi, which is automatically generated for a pre-de�ned pretext task without the need for
human annotation. The pseudo label Pi can be generated using the attributes of images or
videos such as the context of the images (Zhang et al. 2016) or the temporal information of
videos.

Similarly to supervised learning, the goal of self-supervised learning is to learn a function f
that maps the data xi to the pseudo label Pi. The function f is usually a neural network,
and the training process is done by minimizing the loss function L. Let D the dataset of size
N , where D = {(xi, Pi)}Ni=1. The loss value of a neural network over a dataset is de�ned
as:

L(D) =
N∑
i=1

d(f(xi), Pi) (2.3)

By training the model on pseudo labels, the network can still learn visual features even though
the original dataset was unlabeled. In the process, the network can learn to solve useful tasks,
such as image completion, image coloring, or image jigsaw puzzles. The learned visual features
can then be transferred to downstream tasks, such as image classi�cation, object detection, or
segmentation.

SSL methods can be divided into two categories: contrastive learning and knowledge distillation.
In the following sections, we will introduce the main contrastive learning methods and explain
the knowledge distillation method DINO.

2.3.4 Learning Image Features

In order to learn image features, neural networks are trained on various pretext tasks, which
can be divided into divided intro three categories: generative-based, context-based and semantic
free (Jing et al. 2019). Generative-based methods aim to generate images from the input image,
while context-based methods aim to predict the context of the input image. Semantic free
methods aim to predict the attributes of the input image. In the following sections, we will
introduce the main contrastive learning methods and explain the knowledge distillation method
DINO.

Generative-Based Feature Learning

Generation-based self-supervised methods for learning image features involve the process of gen-
erating images, such as using GANs to generate fake images, super-resolution to generate high-
resolution images, image inpainting to predict missing image regions, and image colorization
to colorize grayscale images. These tasks do not require human-annotated labels and use the
images themselves as pseudo training labels P . Therefore, these methods are considered self-
supervised. The Autoencoder in Pathak et al. 2016 was the pioneer work in this area, which
learns to compress an image into a low-dimensional vector, which can then be uncompressed back
into an image that is similar to the original. Current image generation-based methods follow
a similar idea but with di�erent pipelines to learn visual features through the process of image
generation.

One speci�c type of image generation-based method is the use of Generative Adversarial Networks
(GANs). GANs consist of two networks, a generator and a discriminator. The generator gener-
ates images from latent vectors, while the discriminator tries to distinguish between generated
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Figure 2.4: Automatic Inpainting use autoencoders to predict the missing regions of an image,
trained with L2 reconstruction loss (Pathak et al. 2016)

and real images. The two networks compete against each other during training, with the discrimi-
nator trying to improve its ability to di�erentiate and the generator trying to produce more realis-
tic images. This competition leads to the improvement of both networks.

In addition to image generation with GANs, there are other types of generative-based feature
learning methods such as image generation with super resolution and image generation with
colorization.

Super-resolution is a technique that aims to increase the resolution of an image by generating a
high-resolution version of it. This can be done by training a model to learn the mapping between
low-resolution and high-resolution images, and then using this model to generate high-resolution
versions of new low-resolution images. In Ledig et al. 2017, the authors proposed SRGAN, a
GAN network for generative a super-resolution image. This approach can be used as a self-
supervised feature learning method, where the high-resolution image is used as the pseudo label
for the low-resolution image.

Image colorization is another example of generative self-supervised feature learning, it consists
of adding colors to grayscale images. The model learns to predict the colors of an image based
on its grayscale version and the task can be treated as a self-supervised task where the colorized
image is used as the pseudo label for the grayscale image. In recent years, several deep learning-
based methods for image colorization have been proposed. A common approach is to use a fully
convolutional neural network (CNN) that consists of an encoder for feature extraction and a
decoder for color hallucination. The network can be optimized using the L2 loss between the
predicted color and the original color. An alternative approach was proposed by Zhang et al.
2016. where they treated the task as a classi�cation task and used class-rebalancing to increase
the diversity of predicted colors. When trained on large-scale image collections, this method
achieved impressive results and was able to fool human evaluators in 32% of the trials during
the colorization test.

Semantic Free Feature Learning

Free semantic labels are labels that have semantic meaning and are generated without human
involvement. These types of labels, such as segmentation masks, depth images, optic �ows, and
surface normal images, can be produced using game engines or hard-coded methods. As they are
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automatically generated, the use of synthetic datasets or in combination with large unlabeled im-
age or video datasets is considered as a self-supervised learning approach.

Figure 2.5: An example of an indoor scene generated by a game engine and its corresponding
use cases. This approach can lead to a large amount of high quality segmentation
maps or depth estimation data. (Shah et al. 2017)

Game engines, such as Airsim (Shah et al. 2017), can produce realistic images and corresponding
pixel-level labels by modeling various objects and environments. These engines can generate
large-scale datasets with minimal cost and have been utilized to create synthetic datasets with
high-level semantic labels, including depth, contours, surface normal, segmentation mask, and
optical �ow, for training deep learning networks. An example of an indoor scene generated
by a game engine and its corresponding labels is shown in Figure 18. However, due to the
di�erence between synthetic and real-world images, it is challenging to directly apply a neural
network trained on synthetic images to real-world images. To overcome this, the domain gap
must be explicitly addressed when utilizing synthetic datasets for self-supervised feature learning.
Through this method, a neural network trained on the semantic labels of synthetic datasets can
be e�ectively applied to real-world images

Context-Based Feature Learning

Context-based pretext tasks utilize the context features of images, such as context similarity,
spatial structure, and temporal structure, as the supervision signal. Neural networks learn
features by solving pretext tasks that are designed based on the attributes of the context of
images. Context-based pretext tasks for self-supervised learning utilize the rich spatial context
information contained in images, such as the relative positions of di�erent patches within an
image. These tasks can include predicting the relative positions of two patches from the same
image, recognizing the order of a shu�ed sequence of patches from the same image, or recognizing
the rotation angle of an entire image. To accomplish these pretext tasks, Neural Networks must
learn spatial context information such as the shape of objects and the relative positions of
di�erent parts of an object.

One example of this approach is the method proposed by Doersch et al. 2016, which involves
training a Convolutional Neural Network to recognize the relative positions of random pairs of
image patches extracted from an image. Other methods have been proposed that involve solving
more di�cult spatial puzzles, such as the image Jigsaw puzzle. In this task, an image is divided
into several patches, which are then shu�ed and fed to the network, which is trained to recognize
the correct spatial locations of the input patches by learning the spatial context structures of
images such as object color, structure, and high-level semantic information. The main principle
of designing puzzle tasks is to �nd a suitable task that is not too di�cult or too easy for a
network to solve, as a task that is too di�cult may not converge or a task that is too easy may
lead to trivial solutions.

Another approach to context-based feature learning is the contrastive learning approach, which
trains the model to predict if two inputs are from the same source or not. As an example,
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SimCLR T. Chen et al. 2020 uses a contrastive learning approach to train a neural network to
predict if two randomly cropped patches from the same image are from the same source or not.
This approach can be used to learn features that are invariant to image transformations such as
color, rotation, and translation.

(a) Attract embeddings from the same in-

put image

(b) Repel embeddings from di�erent in-

put images

Figure 2.6: SimCLR (T. Chen et al. 2020) employs contrastive learning to learn image repre-
sentation without labels. By positively associating images that come from the same
input, and repelling images that come from di�erent ones, SimCLR is able to learn
contextual and global knowledge of the images.

In this report, we will focus on the DINO, a recent approach to Self-Supervised Learning on Vision
Transformers which uses context-based feature learning and knowledge distillation to teach a
student neural network to learn features from a representation of unlabeled data. This approach
will come to play in the following chapters as a strong approach pre-training for downstream
tasks, and �nding regions of interest without labels.

2.4 DINO: Self-Distillation with no labels

In Emerging Properties in Self-Supervised Vision Transformers Caron et al. 2021, the Face-
book AI team has shown the potential of self-supervised pretraining on Visiton Transformers
model (ViT) and proposed the DINO algorithm. This approach to self-supervised pretraining
produces models achieving performance that are comparable to the best Convolutional Neural
Networks, while also providing insights into the image embeddings produced. The motivation
is that self-supervised pretraining, in the form of the masked language modeling objective in
BERT or language modeling in GPT, played a crucial role in the success of Transformers in
natural language processing (NLP). These self-supervised pretraining objectives use the words
in a sentence to create pretext tasks that provide a more comprehensive learning signal than the
supervised objective of predicting a single label per sentence.

In this section we will provide a deep down into the knowledge distillation approach of DINO,
preview the attention maps it could provide (2.4.3) and present how models pretrained by DINO
outperforms fully supervised models.
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2.4.1 Student and Teacher networks learn global representations

The DINO framework is similar in structure to recent self-supervised approaches, but also incor-
porates elements of knowledge distillation. The overall structure of DINO is illustrated in Figure
2 and its pseudo-code implementation is provided in Algorithm 1.

Knowledge distillation is a technique where a student network, gθs , is trained to mimic the output
of a teacher network, gθt , with parameters θs and θt respectively. Given an input image x, both
networks output probability distributions over K dimensions, denoted by Ps and Pt. These
distributions are obtained by normalizing the output of the network g with a softmax function.
The temperature τs > 0 controls the sharpness of the distribution, and is used to prevent the
student network from over�tting to the teacher network.

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

(2.4)

The student network is trained to match these distributions by minimizing the cross-entropy
loss with respect to its parameters θs. This is done by minimizing the cross-entropy loss
H(Pt(x), Ps(x)).

min
θs

H(Pt(x), Ps(x)) = min
θs
−Pt(x) logPs(x) (2.5)

To begin, DINO generates a set of various distorted views of an image, known as crops. Specif-
ically, from a given image, the algorithm creates a set V of di�erent views, which includes two
global views, as well as multiple local views of smaller resolution. All of the crops are processed
by the student network, but only the global views are processed by the teacher network. This
encourages correspondence between local and global features.

Figure 2.7: The student network is trained to predict the global view of the teacher network.

2.4.2 Student and Teacher networks share architecture and knowledge

The student and teacher networks architecture are identical and are both initialized with the
same parameters. The student network is trained to match the teacher network, and the teacher
network is updated to match the student network. This is done by using a momentum update
rule, where the teacher network is updated with a rate l and the student network is updated
with a rate 1− l. This is done to ensure that the student network does not over�t to the teacher
network (collapse) and that the teacher network does not over�t to the student network (diverge).
The update rule for the teacher network is given by:
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θt ← lθt + (1− l)θs (2.6)

with l being the momentum rate, and following a cosine schedule from 0.996 to 1 during train-
ing.

Another novel technique in order to avoid teacher collapse is the use of a centering technique.
Centering the prediction of the teacher network gt before the softmax function is applied is done
by subtracting the mean of the teacher network's output from the teacher network's output.
This is done by maintaining a running average of the teacher network's output, and subtract-
ing this average from the teacher network's output. The update rule for the center is given
by:

C ← mC + (1−m)
1

B

B∑
i=1

gt(x)
(i) (2.7)

where m > 0 is a rate parameter and B is the batch size.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop

1: gs, gt ← student and teacher networks
2: C ← center (K)
3: tps, tpt ← student and teacher temperatures
4: l, m ← network and center momentum rates
5: gt.params ← gs.params
6: for x in loader do
7: x1, x2 ← augment(x), augment(x)
8: t1, t2 ← gt(x1), gt(x2)
9: loss ← 1

2(H(t1, s2) + H(t2, s1))
10: loss.backward()
11: update(gs)
12: gt.params ← l*gt.params + (1-l)*gs.params
13: C ← m*C + (1-m)*cat([t1, t2]).mean(dim=0)
14: end for

15:

16: function H(t, s)
17: t ← t.detach()
18: s ← softmax(s / tps, dim=1)
19: t ← softmax((t - C) / tpt, dim=1)
20: return - (t * log(s)).sum(dim=1).mean()
21: end function

2.4.3 Transformers pretrained with DINO learn attention maps

The DINO framework was built with Transformers in mind, as an answer to similar techniques
applied to Natural Language Processing. The writers of DINO (Caron et al. 2021) have tested
both ResNet and ViT architectures when evaluating the SSL algorithm. Among the properties
of Vision Transformers is the ability to learn attention maps, by evaluating the di�erent heads
of the Transformer. For example, the architecture of ViT-8 small provides 6 attention heads
that all should focus on di�erent semantic regions of the image. The weights of the attentions
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

heads then could provide insights on di�erent regions of the image, can be used to visualize the
attention maps of the Transformer.

Figure 2.8: Attention maps of the ViT-8 small architecture.

This property of the ViT architecture will be particularly useful to the task of understanding
the IvyGAP dataset and �nding regions of interests, as it can allow us to �nd relevant and
distinct regions of the whole slide images without the need of segmentation labels or supervised
learning.

2.4.4 Transformers pretrained with DINO learns semantic representation for
clustering

One of the properties of DINO highlighted by the authors is the quality of embeddings for
classi�cation, even using basic clustering methods like k-NN. With no �netuning, linear classi�er
or data augmentation, a ViT-8 model pretrained with DINO can achieve 78.3% accuracy on
ImageNet.

To obtain these results, the authors have frozen the weights of the model and did not use the
downstream head, in other words for g = h ◦ f , h was not used. The nearest neighbor classi�er
is then trained on the frozen features of an image, by �nding the most represented class among
the k neighbors. The other advantage for such method is that one can obtain a model that
produces quality features for clustering without using labels and using a di�erent (and larger)
dataset.

Method Arch. Param. im/s Linear k-NN

Supervised ViT-S 21 1007 79.8 79.8

BYOL∗ ViT-S 21 1007 71.4 66.6

MoCov2∗ ViT-S 21 1007 72.7 64.4

SwAV∗ ViT-S 21 1007 73.5 66.3

DINO ViT-S 21 1007 77.0 74.5

Table 2.2: Performance of di�erent SSL methods on ImageNet. All methods excepted Super-
vised are trained using self-supervised learning, hence without any labels. We observe
that DINO features outperforms the other methods on the ImageNet dataset, reach-
ing 74.5% accuracy.

This property of models trained with DINO is particularly interesting for our task, as we can
use the features of the model to cluster the images of the IvyGAP dataset. Furthermore it may
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allow us to understand better the distribution of patches through a dataset and �nd confounding
labels.

Figure 2.9: Clustering of the ImageNet dataset using the features of a ViT-8 model pretrained
with DINO. The images are clustered using the k-NN classi�er, and the clusters
are then visualized using t-SNE.

2.4.5 Transformers pretrained with DINO can be leveraged for downstream
tasks

The authors have evaluated the quality of the embedding and features learn with DINO by
evaluating the obtained architecture on downstream task. Let f bet the ViT or ResNet backbone
obtained after SSL pretraining, and h an arbitrary head for downstream task, then the model
g = h ◦ f has been evaluated as a candidate for downstream tasks, against supervised models.
In this report we will summarize the results obtained by Caron et al. 2021 on classi�cation tasks
across di�erent datasets..

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

Supervised 99.0 89.5 70.7 76.6 98.2 92.1 79.9

DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

Table 2.3: Accuracy of the VIT-S/16 model on di�erent datasets, either supervised or pre-
trained with DINO. We see that the DINO model outperforms the supervised model
on all classi�cation datasets.

On ImageNet, a classi�cation dataset of more than 14 millions images and containing 20'000
classes, the model pre-trained by DINO has observed an improvement of 1-2% compared to
the baseline of a supervised model. We will evaluate this method on the IvyGAP dataset, and
compare the results with the supervised model.
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

2.5 Self-Supervised pretraining of Vision Transformers for

Medical Image Analysis

2.5.1 Introduction

Using the di�erent components introduced in the previous sections, we will now evaluate the
performance of the DINO framework on the IvyGAP dataset. In chapter 1, we have introduced
the Glioblastoma dataset IvyGAP and the di�erent challenges it poses, along with the Renal
Cancer dataset taken from a smartphone. Then we have introduced Self-Supervised Learning
as an approach for learning image features without the need for labels in section 2.3.1, and the
mechanism of self-attention in Vision Transformers to learn features relationships within an image
in section 2.2. Finally we have introduced the DINO framework has a modern approach for Self-
Supervised Learning on Vision Transformers in section 2.4. In this section we will evaluate the
performance of the DINO framework on the IvyGAP dataset, and compare it to the supervised
model.

In this evaluation, we aim to demonstrate the e�ectiveness of the DINO framework in learning
image features from the IvyGAP dataset, which is known to have a limited amount of annotated
data. By comparing the performance of the DINO framework with a supervised model, we
aim to show that self-supervised learning can be a viable alternative to traditional supervised
learning in scenarios where labeled data is scarce. Furthermore, we will analyze the impact of
the self-attention mechanism on the performance of the model and how it contributes to the
learning of meaningful image features. This evaluation will provide insights into the potential of
self-supervised learning and the DINO framework for medical image analysis and its potential
applications in the �eld of computer vision.

2.5.2 Method

Model: Vision Transformers with Classi�cation Head

Vision Transformers (ViT) (Dosovitskiy et al. 2021) are a recent advancement in the �eld of
computer vision that utilize the transformer architecture to perform image classi�cation tasks.
The transformer architecture, originally developed for natural language processing, has shown
remarkable success in various computer vision tasks such as image classi�cation and object
detection.

ViT replaces the traditional convolutional neural network (CNN) architecture used in computer
vision with a fully-connected network based on the transformer architecture. This allows ViT
to process entire images as sequences of tokens, rather than breaking them down into local
patches. The self-attention mechanism in the transformer architecture enables ViT to learn
global relationships between the tokens in the image and produce more powerful representations
for image classi�cation tasks.

One of the key innovations in ViT is the use of a patch embedding layer, which breaks the image
into a �xed-size patch and converts each patch into a dense vector representation. These patch
embeddings are then fed into the transformer encoder to capture the relationships between the
patches. This allows ViT to process images of varying sizes and aspect ratios, which is a major
advantage over traditional CNNs. In recent years, ViT has shown promising results on various
benchmark datasets and has surpassed the performance of traditional CNNs in some cases. The
ability of ViT to process entire images as sequences and capture global relationships between
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2.5 Self-Supervised pretraining of Vision Transformers for Medical Image Analysis

image patches has made it a popular choice for computer vision tasks, and further research is
being conducted to improve its performance and extend its applications.

Figure 2.10: An example of a ViT network. The input image is broken down into patches, which
are then converted into dense vectors using a patch embedding layer. These patch
embeddings are then fed into the transformer encoder, which produces a sequence
of tokens. The output of the transformer encoder is fed into the downstream
encoder head, which performs the task-speci�c computation.

The downstream encoder head is the �nal layer in a ViT network that performs the task-speci�c
computation, such as image classi�cation. The output of the transformer encoder is fed into
the downstream encoder head, which typically consists of a few fully-connected layers followed
by a softmax activation function to produce a probability distribution over the classes in the
dataset. The parameters of the downstream encoder head are typically trained end-to-end with
the rest of the network, allowing it to learn task-speci�c representations that are optimized for
the target task. The design of the downstream encoder head can have a signi�cant impact on the
performance of the ViT network. For example, the number of fully-connected layers and their
size, as well as the activation function used, can all in�uence the �nal performance of the network.
Thus, careful consideration of the downstream encoder head is important when designing a ViT
network for a speci�c task.

Pretraining: DINO Self-Supervised Learning

Self-supervised learning is a cutting-edge approach in the �eld of machine learning that has gained
signi�cant attention in recent years (Jing et al. 2019). It refers to the process of training deep
neural networks on large-scale unannotated data, where the model learns to perform tasks or solve
problems without explicit human-provided labels. This method has proven to be highly e�ective
in producing state-of-the-art results in various applications, particularly in computer vision and
natural language processing. The ability to leverage unannotated data makes self-supervised
learning particularly useful for training models on large-scale datasets, where annotating all the
data may not be feasible. Furthermore, the models trained using this approach can be �ne-tuned
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

for speci�c tasks using relatively small amounts of labeled data, making them ideal for use as
pre-trained models.

One of the most promising applications of self-supervised learning is in the area of medical
image analysis, where it has been used to improve the accuracy and e�ciency of computer-aided
diagnosis systems. The ability of self-supervised learning to learn high-level representations of
medical images can be used to improve tasks such as classi�cation, segmentation, and registration,
leading to better patient outcomes.

The DINO algorithm Caron et al. 2021 is a powerful self-supervised learning approach that
leverages the idea of distillation to train deep neural networks. The algorithm consists of two
networks: a student network and a teacher network, both with the same architecture but di�erent
parameters. The input image is transformed in two ways and passed through both networks, with
the output of the teacher network being used to guide the training of the student network. The
two networks are trained to produce similar features, with the similarity being measured using
a cross-entropy loss. The teacher parameters are updated using an exponential moving average
of the student parameters, and the gradients are only propagated through the student network.
The DINO algorithm has proven to be highly e�ective in producing high-quality representations
of images, and it has been used in various applications, including computer vision and medical
image analysis. In this section, we will leverage these image embeddings by adding a classi�cation
head to the pretrained model and evaluating its performance.

2.5.3 Experiment

In order to evaluate the e�ectiveness of the DINO framework and SSL pretraining, we will
compare the performance of a supervised model with a self-supervised model trained using the
DINO framework. The evaluation will be done on two datasets of interest for the Yu Lab: the
IvyGap dataset for Glioblastoma patch classi�cation, and the Renal Cancer dataset taken from
a cell-phone.

We compare a Vision Transformers of patch size 8 (ViT-8) pretrained on a medical dataset
(IvyGAP or Renal Cancer) using DINO SSL, to the same model but initialized from random
weights. The pretraining was done over 300 epochs using no labels, a batch size of 8, a learning
rate tuned between 0.0001 and 0.0005, a weight decay of 0.01, a teacher temperature tuned
between 0.01 and 0.05, and a cosine annealing schedule. The downstream classi�cation head was
trained for 50 epochs using a batch size of 8, a learning rate of 0.0002, weight decay of 0.01,
batch size 16 and a similar cosine scheduler. The experiment was done on Harvard O2 clusters
using RTX 8000

Results

The results of the experiment are shown in the table 2.4. The results demonstrate the e�ectiveness
of the DINO framework for self-supervised learning. The DINO pretrained model outperforms the
supervised model in terms of accuracy on both the IvyGAP and RCD datasets. The test accuracy
of the DINO pretrained model is 0.7339, which is a 6.27% improvement over the supervised model.
The validation accuracy of the DINO pretrained model is 0.8229, which is a 3.17% improvement
over the supervised model. These results demonstrate the ability of the DINO framework to
learn high-quality representations of medical images, which can be used to improve the accuracy
and e�ciency of computer-aided diagnosis systems.

18



2.5 Self-Supervised pretraining of Vision Transformers for Medical Image Analysis

The improvements in accuracy can be attributed to the ability of the DINO framework to
learn robust representations of medical images. The self-supervised training process allows the
model to learn high-level features of the images without the need for explicit human-provided
labels. This results in a more generalizable model that is able to handle a wider variety of
images compared to a supervised model. Furthermore, the �ne-tuning process using the down-
stream classi�cation head allows the model to adapt to the speci�c task of medical image anal-
ysis.

Model dataset test acc train acc val acc

Supervised IvyGAP 0.6712 0.8163 0.792

DINO Pretrained IvyGAP 0.7339 0.9615 0.8229

Supervised RCD 0.9255 0.9271 0.9531

DINO Pretrained RCD 0.9532 0.9739 0.9616

Table 2.4: Results of the experiment. The DINO pretrained model outperforms the supervised
model in terms of accuracy on both the IvyGAP and RCD datasets.

Embeddings visualization

As discussed in section 2.4.4, the DINO framework is able to train Vision Transformers to
learn high-quality representations, than can be later used to cluster and visualize the space of
images. Using the resulting model from the previous experiment in section 2.5.3, we can perform
dimensionality reduction and T-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize
the embeddings of the images in the dataset. We will perform this visualization for both the
model pre-trained with DINO (which has never seen the labels) and the supervised models.
The results of the embeddings visualization will be compared to see how the representations
learned by the DINO pretrained model di�er from the supervised model. The embeddings of the
supervised model are expected to be more compact and separated, as the self-supervised training
process encourages the model to learn meaningful features.

The visualizations will be performed on a subset of the images from the IvyGAP and RCD
datasets. The t-SNE visualization will provide a 2D projection of the embeddings, making it
easier to see how similar images are clustered together

On �gure 2.12, we can see that the embeddings of the supervised model are more compact and
separated, while the embeddings of the DINO pretrained model are more spread out. This is
expected, as the supervised model is trained to learn features that are useful for the classi�cation
task, while the DINO pretrained model is trained to learn features that are useful for the self-
supervised task. The DINO pretrained model is able to learn more generalizable features, which
can be used to cluster images that are similar in appearance but not necessarily in the same
class.

We can try to understand the embeddings produced by DINO from sub�gure 2.12(a), which did
not use any labels during SSL training. First, we notice that In�ltrating Tumor embeddings
are clustered between In�ltrating Tumor and Cellular Tumor and Leading Edge. This could be
because of how these classes are de�ned. In fact, Leading Edge is the outermost boundary of
the tumor, where there is one tumor cell for every 100 normal cells (1). In�ltrating Tumor is the
zone between Leading Edge and Cellular Tumor. Finally, Cellular Tumor is where there are 100
to 500 tumor cells for every normal cell. The unclear de�nition of the class In�ltrating Tumor
is evident as there are no clear boundaries between these classes. Moreover, we can see that
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2 Self-Supervised Learning for Transformers pre-training on unlabeled dataset

(a) ViT embeddings with DINO (b) ViT embeddings with DINO + �netuning

Figure 2.11: t-SNE visualization of the embeddings of the images in the IvyGAP dataset. The
embeddings of the supervised model are more compact and separated, while the
embeddings of the DINO pretrained model are more spread out.

Background and Necrosis are close together, which makes sense as later stages of Necrosis show
the slide's background. The Background class also seems to have two clusters. This could be
because some samples of the Background class are either completely empty or have some tissue
at the edge.

The clusters and boundaries are more evident in sub�gure 2.12(b), as the DINO pretrained model
was �ne-tuned on a downstream task and thus knows the correct labels. We also seem to have
lost the semantic meaning that was possible on sub�gure 2.12(a), but we gained a more compact
and separated embedding space. This is expected, as the DINO pretrained model is trained to
learn features that are useful for the self-supervised task, while the supervised model is trained
to learn features that are useful for the classi�cation task. The DINO pretrained model can
learn more general features, which can be used to cluster images that look similar, but are not
necessarily in the same class.

For the Renal Cancer Dataset taken from a cellphone, the model trained with DINO SSL does
not seem to provide embeddings as insightful as for IvyGAP. While points from pRCC, chRCC
and ccRCC classes seem to be clustered together, there is no clear clustering and separation
between classes. This may be explained by the fact that the dataset is taken from a cellphone,
which has a lower resolution than the microscope used to take the IvyGAP dataset, and less
obvious cues in the appropriate classe.

2.6 Conclusion

In this chapter, we introduced the model architecture that we will use in this thesis, the learning
method and the pre-training algorithm. To conclude these sections, we conducted experiments
to evaluate their combined performance on classi�cation on IvyGap.

First, we presented Transformer Models and their ability to learn complex global interactions
between tokens. We explained how this approach can be applied to images by splitting the
input into patches, which describes the general architecture of Vision Transformers. Second,
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(a) ViT embeddings with DINO (b) ViT embeddings with DINO + �netuning

Figure 2.12: t-SNE visualization of the embeddings of the images in the RCD dataset. The
DINO pretrained model fails to provide embeddings as insightful as for IvyGAP.

we discussed Self-Supervised learning as a learning method on large unlabeled datasets. We
demonstrated that models pretrained using SSL surpassed supervised models on downstream
tasks, such as classi�cation. This is especially important for medical machine learning tasks
where data labeling can be costly. We examined an instance of such an algorithm, the DINO
algorithm, which uses contrastive learning on Vision Transformers.

Finally, we applied this model to IvyGap and the Renal Cancer Dataset. We obtained semantic
embeddings for inputs in IvyGap and the Renal Cancer Dataset. These embeddings helped us
understand the possible labeling errors and challenges that we will address in the next chap-
ters.
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3 Findings Regions of Interests in High Resolution

Images

3.1 Introduction & Motivation

Whole slide images (WSIs) are digital scans of histopathology slides that can provide high-
resolution and comprehensive information for diagnosis and research. However, WSIs also pose
signi�cant challenges for analysis due to their large size, complex structure, and heterogeneous
content. Therefore, �nding regions of interest (ROIs) in WSIs is an important task that can
facilitate further processing and interpretation of WSIs.

ROIs are usually de�ned as local regions that contain disease-related cells or tissues with speci�c
patterns. However, ROIs do not have a clear or consistent de�nition across di�erent scenarios
and applications. Moreover, ROIs may vary in size, shape, location, appearance, and distribution
within WSIs. Therefore, �nding ROIs in WSIs requires robust and e�cient methods that can
handle these variations and complexities. The motivation behind this work is twofold. First, the
Yu Lab has considered this solution as a tool in case of a surgery of a patient where the fast study
of tissue is crucial. Here �nding meaningful and insightful areas is a key factor, as it can help
the surgeon to make a decision on the development of a disease or tumor. Second, the Yu Lab
has been working on an external module for a conventional lab microscope which would allow it
to replicate the scanning process of much more expensive industrial microscopes. This module
would have multiple parts, such as a camera for a video feed, external motors for the movement
of the microscope, and a computer for the processing of the images. The computer would be
able to detect ROIs in the images and send the coordinates of the ROIs to the microscope, which
would then move to the corresponding location. This would allow the user to quickly scan the
tissue and �nd the most interesting areas.

In this report, we aim to study both supervised and unsupervised techniques for �nding ROIs
in WSIs using transformer models that can capture global dependencies and contextual infor-
mation from large-scale data. For supervised techniques, we will look at TransUNet (J. Chen
et al. 2021), a transformer-based model that combines a vision transformer (ViT) encoder with
a U-Net decoder for medical image segmentation. We will also explore techniques such as trans-
former interpretability (Chefer et al. 2021a) that can provide insights into how transformers
make decisions and what features they learn from WSIs. For unsupervised techniques, we will
use transformer weights from DINO (Caron et al. 2021), a self-supervised method that trains
vision transformers with an online distillation process and achieves state-of-the-art results on
multiple vision tasks. We will investigate how these weights can be used to �nd ROIs in WSIs
without any manual annotation.

Related Work

One of the recent trends in �nding ROIs in WSIs is to use deep learning techniques that can learn
complex features and patterns from large-scale data. For example, Huang et al. 2020 proposes a
fast ROI detection method that combines a deep convolutional neural network (CNN) with image
processing techniques such as thresholding, �ltering, and morphological operations. The CNN
is trained on patches extracted from WSIs to classify them as ROI or non-ROI, while the image
processing techniques are used to re�ne the ROI boundaries and remove noise. This method
achieves high accuracy and speed on various types of WSIs. Another example is Nugaliyadde
et al. 2020, which investigates the use of RCNN, a deep machine learning technique that consists
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of a region proposal network (RPN) and a region-based CNN (R-CNN). The RPN generates
candidate ROIs based on anchor boxes, while the R-CNN classi�es them as ROI or non-ROI using
features extracted by another CNN. This method can detect ROIs with di�erent sizes and shapes
using only a small number of labelled WSIs for training. However, both methods require manual
annotation of ROIs for training, which can be time-consuming and subjective. To overcome this
limitation, Benomar et al. 2021 presents a method that does not rely on manual annotation but
uses local information extracted from sub-images of WSIs. The method applies unsupervised
clustering algorithms such as k-means and hierarchical clustering to group sub-images based
on their similarity in terms of color, texture, shape, and spatial distribution. Then, it selects
representative sub-images from each cluster as potential ROIs using criteria such as entropy,
contrast, homogeneity, energy, correlation, variance ratio index (VRI), mean square error (MSE),
peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), etc. This method
can identify ROIs in WSIs of renal cell carcinoma with high accuracy.

3.2 DINO: Attention maps learned through Self-Supervised

Learning

3.2.1 Introduction

As we have discussed in chapter 2, we have introduced DINO, a self-supervised image represen-
tation method that trains Vision Transformers (ViTs) to capture rich visual features without
any labels. DINO leverages a contrastive learning objective that encourages ViTs to produce
similar outputs for di�erent augmentations of the same image, while being di�erent from other
images. DINO also uses a teacher-student framework with an online distillation mechanism that
stabilizes the training and enhances the feature quality.

The attention mechanism in Transformer models allows them to learn how to focus on di�erent
parts of an input sequence depending on the context. The attention mechanism computes a score
for each pair of input tokens, which represents how much one token attends to another. The
scores are then normalized with a softmax function and multiplied by the input embeddings to
produce an output vector for each token (Dosovitskiy et al. 2021)

The attention maps are visualizations of these scores, which can show how di�erent tokens relate
to each other in terms of relevance, similarity, or dependency. The attention maps can be used
to analyze and interpret what the Transformer models learn and how they make predictions.
For example, we can use attention maps to see which words or phrases are most important for
a classi�cation task, or which tokens are aligned with each other for a translation task. In this
section, these attention maps will be particularly useful to �nd regions of interest in Whole Slide
Images.

3.2.2 Transformers Attention Heads allow for the visualization of the
attention maps

The paper �Emerging Properties in Self-Supervised Vision Transformers� Caron et al. 2021 pro-
poses a method to visualize attention maps from self-supervised vision transformers (ViTs). The
self-attention module from the last block of ViT can be used to compute a saliency map for
each image patch, which indicates how much each patch contributes to the �nal prediction. The
saliency map can be obtained by multiplying the output feature vector of each patch by its cor-
responding attention weight, and then summing over all heads and layers. The paper shows that

23



3 Findings Regions of Interests in High Resolution Images

this method can produce attention maps that are consistent with semantic segmentation labels,
especially for self-supervised ViTs.

Self-attention is a mechanism that allows a model to learn how to relate di�erent parts of an input
sequence. In vision transformers, self-attention is applied to a sequence of image patches, which
are small regions of an image that are treated as tokens. Each patch has a feature vector that rep-
resents its content, and a positional embedding that encodes its location.

Self-attention computes three matrices from the input sequence: query, key, and value. The
query matrix represents what each patch is looking for, the key matrix represents what each patch
o�ers, and the value matrix represents what each patch contains. Self-attention then calculates
a similarity score between each pair of patches by multiplying their query and key vectors. The
scores are normalized by a softmax function to obtain attention weights, which indicate how
much each patch attends to another patch. The output sequence is obtained by multiplying the
attention weights with the value vectors, and summing over all patches.

The attention map for a given patch is a vector that shows how much each patch contributes to
its output feature. It can be computed by multiplying its query vector Q with all the key vectors
K, applying a softmax function, and then multiplying with all the value vectors V. This can be
written as:

AttentionMap(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimension of the key vectors.

In this section, we will use the same approach on two datasets: Glioblastoma (IvyGAP) and
Renal Cancer (cellphone). We hope that the attention maps will reveal which regions of the
images are most relevant for the model's understanding of the slide image, or in other words,
which parts of the slide image make them most distinctive. We also expect the di�erent attention
heads to focus on a semantically distinct part of the slides, which combined could bring insights
to the histopathology slide.

Figure 3.1: Examples of the attention maps generated by a ViT-S/8 model. We can see that the
network can separate di�erent part of the images overthought it has been trained
with no labels or segmentation maps.

24



3.2 DINO: Attention maps learned through Self-Supervised Learning

3.2.3 Experiments

Method

As in the experiment on self-supervised learning for robust pretraining (2.5.3), we will train a
ViT-S/8 model on the Glioblastoma (IvyGAP) and Renal Cancer (cellphone) datasets. We will
then use the attention maps generated by the last self-attention layer to visualize the regions of
interest in the images, as done by Caron et al. 2021. As this model has 6 attention heads, we
will plot the attention maps for each head separately, along with the averaged attention map for
all heads. We expect that the attention maps will show di�erent regions of interest for each head
and that the averaged attention map will show a usable region of interest �nder.. The model
used is the �ne-tuned model from 2.5.3. The hyperparameter found is a learning rate of 0.00017,
a teacher temperature of 0.006, a weight decay of 0.02, with a ViT-8/S model and batch size of
8. As in the previous experiment, the teacher and student network share the same architecture,
and both try to predict the same distribution of data. However the teacher has access to both
local and global crops of the inputs, whereas the student only has access to local crops. The
model was trained for 300 epochs with a cosine learning rate scheduler, using NVIDIA RTX 8000
GPUs.

Results

In �gure 3.2, we used self-supervised learning with DINO to train a ViT-S/8 model on two medical
image datasets: IvyGAP and Renal Cancer. We then visualized the attention maps generated
by the last self-attention layer of the model to see what regions of interest it learned to focus on.
The attention maps showed that di�erent heads were able to attend to di�erent features of the
images, such as tumor cells, blood vessels, or missing tissue. The averaged attention map also
showed a clear region of interest for each image, indicating that DINO was able to learn a robust
representation of medical images without any labels. This suggests that self-supervised learning
with DINO can be a useful technique for pretraining models for medical image analysis tasks, as
it can capture relevant information from complex and diverse images.

In �gure 3.2(a) and 3.2(b), we see an example of the attention maps generated by the model on
the IvyGAP dataset. We can see that the attention maps are able to focus on di�erent regions
of the patch, as these areas were relevant to the generation of their embedding. The average
attention maps provide a good balance of high interest regions in a patch, while keeping this
information encoded in a single image.

In the same way, we can see in �gure 3.2(c) and 3.2(d) that the attention maps generated on
the Renal Cancer dataset are able to �nd relevant features within an image, such as the large
nest of tumor cells. We notice that the ocular light distortion in �gure 3.2(c) is identi�ed by the
attention head 0.

3.2.4 Discussion

In this work, we have shown that self-supervised learning with DINO can be applied to medical
image datasets to learn meaningful and interpretable representations. We have demonstrated
that DINO can learn to attend to di�erent features of the images, such as tumor cells, blood
vessels, or missing tissue, without any supervision. We have also shown that the attention maps
generated by DINO can be used to visualize and understand what regions of interest the model
focuses on.

25



3 Findings Regions of Interests in High Resolution Images

(a) Patch from IvyGAP. We see that the attention maps are able to focus on di�erent regions of

the patch that make this sample out of the ordinary in this dataset. Heads 0 and 2 focused on

the missing tissue, head 1 on tumor cells, head 3 on blood vessels.

(b) Patch from IvyGAP. Most heads focused on the two aggregations of tumor cells, still head 2

focused on the patch of stretched tumor cells and head 5 on the missing tissue.

(c) Sample from the Renal Cancer Dataset from a cellphone. Head 0, 3 and 5 focused on the large

nest of tumor cells while head 1 focused on the background of the slide. The average attention

map provides a good overview of the attention maps of all heads.

(d) Sample from the Renal Cancer Dataset from a cellphone. Head 2 focuses on the background of

the slide, and the remaining heads on the tumor cells.

Figure 3.2: Examples of attention maps generated by a ViT-S/8 model. We can see that the
network can separate di�erent part of the images overthought it has been trained
with no labels or segmentation maps.
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Our results suggest that self-supervised learning with DINO can be a powerful technique for
pretraining models for medical image analysis tasks. By learning from unlabeled data, DINO
can capture relevant information from complex and diverse images. This can potentially improve
the performance and generalization of downstream tasks, such as segmentation, classi�cation, or
detection. Moreover, by generating attention maps that are easy to interpret and interpretability,
DINO can provide insights into the model's behavior and reasoning. This can help clinicians and
researchers to trust and validate the model's predictions.

One limitation of our work is that we only used a small model (ViT-S/8) and two datasets
(IvyGAP and Renal Cancer) to evaluate DINO's performance on medical images. Future work
could explore larger models (such as ViT-B/16 or ViT-L/32) and more datasets (such as Chest
X-Ray or Brain MRI) to see how DINO scales up with more data and parameters. Additionally,
future work could also investigate how to �ne-tune DINO pretrained models on downstream
tasks using labeled data or weak supervision.

3.3 Transformer Interpretability

3.3.1 Introduction

Transformers are powerful models that use self-attention mechanisms to process text and images.
However, understanding how they make decisions is not easy. Existing methods for visualizing
transformer attention either rely on the attention maps themselves or use heuristic rules to
propagate relevance scores along the attention graph. These methods have limitations such
as ignoring class-speci�c information or being sensitive to noise. In this section, we present a
novel method for transformer interpretability by Chefer et al. 2021b that goes beyond attention
visualization. Their method uses a gradient-based approach to compute class-relevance scores for
each input token or pixel, and then aggregates them into class-relevance maps that highlight the
most important regions for each class prediction. We evaluate our method on several transformer
models applied to image classi�cation tasks and show that it outperforms existing methods in
terms of accuracy and robustness. Transformer Interpretability in this context as a weakly
supervised method to �nd regions of interest. By training a model using class labels for the
entire image, we hope to obtain a model that can also produce region maps without the need for
segmented images. In this section, we will explain the approach taken by this Gradient Based
Method to produce class-relevance maps, and evaluate on IvyGAP and Renal Cancer datasets
to �nd regions of interest that correlate to patch class.

Related Works

Gradient-based methods are a class of techniques that use gradients to compute saliency maps
for neural network visualization. These methods aim to highlight the input regions that have the
highest in�uence on the output prediction for a given class. Gradient-based methods have several
advantages over attention-based methods, such as being more robust to noise and being applicable
to any neural network architecture. One example of gradient-based method is FullGrad (Full-
Gradient Representation, Srinivas et al. 2019), which decomposes the neural network response
into input sensitivity and per-neuron sensitivity components, and aggregates them with bias
terms to obtain saliency maps. This method has the disadvantage of being class agnostic, in
other words we can only see the relevancy score for the predicted class, and not for other potential
classes. Another example is Grad-CAM (Gradient-weighted Class Activation Mapping, Selvaraju
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3 Findings Regions of Interests in High Resolution Images

et al. 2017), which uses the gradients of any target concept �owing into the �nal convolutional
layer to produce a coarse localization map. Grad-CAM

LRC (Layer-wise Relevance Conservation, Binder et al. 2016) is a method that extends layer-
wise relevance propagation (LRP), a popular technique for computing relevancy scores, to neural
networks with local renormalization layers. LRC preserves the conservation property of LRP,
which ensures that the sum of relevancy scores at each layer equals the prediction score at the
output layer. LRC also provides intuitive and meaningful visualizations of relevancy scores for
image classi�cation tasks. Transformers use di�erent non-linearities than ReLU, which produce
both positive and negative features. This can cause numerical problems if skip connections are
not properly handled. For example, LRP tends to break down in such situations. Self-attention
layers also pose a di�culty because a simple propagation through them would not preserve the
total amount of relevancy.

3.3.2 Method to compute relevancy score

Relevancy Score and LRP method

Relevancy score is a measure of how important an input feature is for a neural network
prediction. It can be used to explain and understand how neural networks make decisions, as
well as to improve their performance and robustness. However, computing relevancy scores for
complex neural network architectures is not trivial. One of the challenges is dealing with non-
linearities such as local renormalization layers, which are commonly used in convolutional neural
networks.

LRP is a technique that assigns relevance scores to input features based on their contribution to
the output prediction. It operates by propagating the prediction backward in the neural network,
using a set of purposely designed propagation rules. The propagation rules are based on two
principles: conservation and positivity. Conservation means that the total amount of relevance
is preserved at each layer of the network. Positivity means that only positive contributions are
propagated back, meaning that features that increase the output score receive positive relevance,
while features that decrease it receive zero relevance.

The propagation rules can be di�erent for di�erent types of layers and activations. For example,
for a linear layer with weights W and biases b, and an input x producing an output y = Wx+ b,
the propagation rule is:

Ri =
∑
j

xiwij∑
k xkwkj

Rj

where Ri is the relevance score of input feature i and Rj is the relevance score of output feature
j.

For a ReLU activation layer with input z producing an output y = max(0, z), the propagation
rule is:

Ri =
yi
zi
Ri

where Ri is both the input and output relevance score of feature i.
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3.3 Transformer Interpretability

The relevancy map is a visualization tool that shows how much each input feature contributes to a
certain output class. It can be obtained by applying LRP to a neural network model and comput-
ing relevance scores for each input feature with respect to each output class.

For example, for an image classi�cation task, the relevancy map can show which pixels in an image
are most relevant for predicting a certain class label. The relevancy map can help understand
how the model makes its decisions and identify potential biases or errors.

Gradient di�usion for transformers

We can now proceed to describe how this mechanism has been generalized by Chefer et al. 2021a
for Transformers Models and their self-attention heads. We have a Transformer model M with
B blocks. Each block b has self-attention, skip connections, and other layers. The model gets a
sequence of s tokens with dimension d. One token is for classi�cation: [CLS]. The model gives
a vector y of length C for classi�cation using [CLS]. The self-attention uses a smaller dimension
dh, where h is the number of heads and hdh = d. The self-attention mechanism of a Transformer
model is de�ned as follows:

A(b) = softmax(
Q(b) ·K(b)

√
dh

) (3.1)

O(b) = A(b) ·V(b) (3.2)

Let (·) be matrix multiplication. The attention output in block b is O(b) ∈ Rh×s×dh . The query,
key and value inputs in block b are Q(b),K(b),K(b) ∈ Rh×s×dh , which are projections of an input
x(n) for self-attention. The attention map in block b is A(b) ∈ Rh×s×s, where row i has the
attention weights for each token with respect to token i. We apply softmax in equation 3.1 so
that each row in each head of A(b) sums to one.

Each attention map A(b) has gradients ∇A(b) and relevance Rnb for a class t, where nb is the
softmax layer in 3.1 of block b, and Rnb is the layer's relevance. We de�ne the output C ∈ Rs×s

of our method as the weighted attention relevance:

Ā(b) = I + E(∇A(b) ⊙Rnb) (3.3)

C = Ā(1) · Ā(2) · · · Ā(B) (3.4)

with ⊙ being the Hadamard product and Eh be the mean over the heads. We compute the
weighted attention relevance with only the positive values of ∇A(b) ◦R(nb) for positive relevance.
We add the identity matrix to account for the skip connections in the block and avoid numerical
instability. This method gives a matrix C ∈ Rs×s for an input sequence of length s. Each row
has a relevance map for each token with the other tokens - like the attention in 3.1, 3.4. For
classi�cation models, we only use the [CLS] token that explains the classi�cation. The relevance
map is from the row C[CLS] ∈ Rs for the [CLS] token. This row has a score for each token's
in�uence on the [CLS] token. Hence, for a vision transformer model, we can obtain the �nal
relevancy map by reshaping the row C[CLS] to the patch grid size.
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3 Findings Regions of Interests in High Resolution Images

Figure 3.3: Transformer Interpretability architecture. The gradient ∇A(b) and relevancy R(nb)

are back-propagated in order to compute the attention and the �nal relevancy map.

3.3.3 Experiment

Method

In order to evaluate the performance of Transformer Interpretability (Chefer et al. 2021a), we
will use a Vision Transformer (ViT, Dosovitskiy et al. 2021) with a classi�cation head. We chose
to be consistent with previous experiments, by using a ViT-S model with patch size 8. The loss
function used was the cross-entropy loss function. The optimizer used was Adam with a learning
rate of 0.001, with weight decay of 0.05. The model was trained for 30 epochs with batch size of
8. The model was trained on the IvyGAP dataset, which contains histopathological images of
brain tumors. The dataset contains 224x224 patch images at 20x magni�cation. We used 38892
patches for training, 5917 for validation and 5983 for testing. The dataset contains 5 classes:
Necrosis, Cellular Tumor, Background, In�ltrating Tumor and Tumor Border. The dataset is
imbalanced, with the most common class being Cellular Tumor.

Results

The �gures 3.4 show some examples of gradient-based relevancy maps for patches from the Ivy-
GAP dataset, which contains histopathological images of brain tumors. The relevancy maps
highlight the image features that correlate strongly with di�erent tumor classes, such as necro-
sis, cellular tumor, background and in�ltrating tumor. For instance, we can see that necrosis
patches are characterized by the absence of tissue, cellular tumor patches are characterized by
the presence of tumor cells and dying tissue, background patches are characterized by the ab-
sence of tissue and slide background, and in�ltrating tumor patches are characterized by the
presence of tumor cells and dying tissue. These relevancy maps can help us understand how
the Transformer-based model makes its predictions and what kind of features it learns from the
data.

Discussion

The results show that Transformer Interpretability can generate meaningful and intuitive rele-
vancy maps for Vision Transformer models applied to histopathological image classi�cation. The
relevancy maps can provide insights into the model's decision-making process and the learned
features that are relevant for di�erent tumor classes. This can help us evaluate the model's
performance and identify potential sources of error or bias. The relevancy maps can also help
us improve the model's robustness and generalization by suggesting ways to augment the data
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or modify the architecture. Finally, they can also help us communicate the model's predic-
tions and explainability to domain experts and end-users, such as pathologists and clinicians.
This can increase their trust and acceptance of the model and facilitate its adoption in clinical
settings.

3.4 TransUNet

3.4.1 Introduction

Medical image segmentation is a challenging task that requires capturing both global and local
features of images. Convolutional neural networks (CNNs) have been widely used for this task,
but they have limitations in modeling long-range dependencies and preserving spatial informa-
tion. Transformers, on the other hand, can model global context e�ectively with self-attention
mechanisms, but they may lose �ne-grained details due to tokenization and pooling operations.
To address these issues, J. Chen et al. 2021 has proposed TransUNet, a hybrid model that com-
bines Transformers and U-Net, a popular CNN architecture for segmentation. TransUNet uses a
Transformer as a strong encoder to extract high-level semantic features from tokenized patches of
images, and a U-Net as a decoder to recover spatial resolution and enhance local details. Tran-
sUNet outperforms various state-of-the-art methods on di�erent medical image segmentation
tasks, such as multi-organ segmentation and cardiac segmentation.

TransUNet and UNet are both U-shaped convolutional neural network architectures for image
segmentation tasks. The main di�erence between them is that TransUNet uses a hybrid CNN-
Transformer encoder to learn both high-resolution spatial information from CNNs and global
context information from Transformers (Dosovitskiy et al. 2021). UNet uses only CNNs for both
encoding and decoding, and relays strongly on skip connection and an autoencoder architec-
ture.

In this section, we will overview a �nal approach to �nding regions of interest, which is to
apply TransUNet to perform segmentation on labeled datasets. We will �rst introduce the main
components and design choices of TransUNet, and then compare its performance with UNet and
other baselines on the Renal Cancer Dataset and Glioblastoma dataset.

3.4.2 Transformer-CNN Hybrid Architecture

TransUNet is a hybrid architecture that combines Transformers and U-Net for medical image
segmentation. The main components of TransUNet are:

A hybrid encoder that consists of a convolutional stem followed by a Transformer unit. The
convolutional stem extracts low-level features from the input image and reduces its spatial res-
olution. The Transformer unit consists of multiple Transformer layers that apply self-attention
and feed-forward networks to learn high-level semantic features from the patch embeddings. The
patch embeddings are obtained by linearly projecting the vectorized patches of the image and
adding learned position embeddings to encode spatial information.

A decoder that consists of multiple upsampling blocks followed by a convolutional output layer.
The upsampling blocks use transposed convolutions to increase the spatial resolution of the
feature maps and concatenate them with corresponding feature maps from the encoder via skip
connections. The skip connections help preserve �ne-grained details and enhance localization
abilities. The convolutional output layer produces the �nal segmentation map with pixel-wise
predictions.
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(a) Necrosis patch, and the gradient-based relevancy map. We see that

the image features that correlates strongly with Necrosis are the ab-

sence of tissue in the patch.

(b) Cellular Tumor patch. The gradient-based relevancy map shows that

the image features that correlates strongly with Cellular Tumor are

the presence of tumor cells in the patch, and the dying tissue.

(c) Background patch. The gradient-based relevancy map shows that

the image features that correlates strongly with Background are the

absence of tissue, where we can see the background of the slide.

(d) In�ltrating Tumor patch. The gradient-based relevancy map shows

that the image features that correlates strongly with In�ltrating Tu-

mor are the presence of tumor cells in the patch, and the dying tissue.

Figure 3.4: Gradient-based relevancy maps for patches from the IvyGAP dataset.
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Figure 3.5: TransUNet architecture. The hybrid encoder consists of a convolutional stem and
a Transformer unit. The decoder consists of multiple upsampling blocks and a
convolutional output layer.

Skip connections that allow some layers in a neural network to be skipped and their outputs to
be directly fed to later layers. Skip connections can help improve the performance and training of
deep neural networks by: Preserving spatial information and �ne-grained details that may be lost
due to downsampling or pooling operations. Enabling feature reuse and fusion from di�erent
levels of abstraction and resolution. Reducing the vanishing gradient problem by providing
alternative paths for gradient �ow. There are two main types of skip connections: additive skip
connections and concatenative skip connections. Additive skip connections add the output of one
layer to the input of another layer, while concatenative skip connections concatenate them along
a certain dimension. Additive skip connections are often used in ResNet-like architectures, while
concatenative skip connections are often used in U-Net-like architectures.

TransUNet di�ers from UNet mainly in two aspects: (1) it uses a hybrid CNN-Transformer
encoder instead of a pure CNN encoder to learn both high-resolution spatial information from
CNNs and global context information from Transformers; (2) it uses an attention-based skip
connection instead of a simple concatenation to enhance feature fusion between the encoder and
decoder. These design choices make TransUNet more powerful and �exible for medical image
segmentation tasks than UNet.

3.4.3 Experiment

Method

We will use the TransUNet model to perform the segmentation of classes over the Whole Slide
Images of IvyGAP. We will compare its performance to UNet and report their test metric. The
tuned hyperparameters are the learning rate, weight decay and batch size. We have found that
the best learning rate for both model was 1e−5, a weight decay of 0.005 along with a batch size of
16. Here we will report the Intersection over Union (IoU) for the evaluation of the segmentation.
The IoU is de�ned as IoU(A,B) = |A∪B|/|A∩B|. The loss function used was cross-entropy loss,
for 50 epochs with Adam optimizer. The model was trained on a NVIDIA RTX 8000 with 48GB
of memory. The training time was around 1 hour for each model. We have evaluated the UNet
and TransUNet models on 512x512 WSI from IvyGAP, and compared them with the ground truth
segmentation map which contains 5 labels. We expect the TransUNet model to outperform the
UNet model, as it is can use hierarchical patterns using the convolutional modules and exploit
long-range dependencies using the Transformer modules. We used the original dataset split of
IvyGAP, which is 474 slides for training, 283 for validation and 189 for testing. Results are
shown in Table 3.1.
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Results

Model val/acc_best test/acc train/acc

UNet 0.6936 0.7021 0.7072

TransUNet 0.7495 0.7403 0.7703

Table 3.1: Comparison of UNet and TransUNet on three metrics: val/acc_best (the best vali-
dation accuracy achieved during training), test/acc (the test accuracy at the end of
training), and train/acc (the training accuracy at the end of training). TransUNet
outperforms UNet on all metrics, indicating that it can learn more e�ectively from
the data.

The results in Table 3.1 show that TransUNet achieves signi�cantly higher accuracy than UNet
on both validation and test sets. This suggests that TransUNet can generalize better to unseen
data and handle the variability and complexity of WSI segmentation. Moreover, TransUNet also
has a higher training accuracy than UNet, indicating that it can �t the data better and avoid
under�tting. The di�erence between training and validation accuracy is smaller for TransUNet
than for UNet, implying that TransUNet has less over�tting and more robustness. The average
IoU score for TransUNet is 0.7534, while for UNet it is 0.7010. This means that TransUNet can
produce more accurate and consistent segmentation maps that match the ground truth labels.
These results demonstrate the relative strenght of TransUNet over UNet for WSI segmentation,
and con�rm our hypothesis that combining convolutional and transformer modules can enhance
the performance of deep learning models for this task.

3.4.4 Discussion

In this section, we have presented TransUNet (J. Chen et al. 2021), a novel deep learning model
that combines convolutional and transformer modules for WSI segmentation. We have shown
that TransUNet outperforms UNet, a widely used baseline model for this task, on three metrics:
validation accuracy, test accuracy and training accuracy. We have also reported the IoU scores for
both models, which indicate that TransUNet can produce more precise and consistent segmenta-
tion maps than UNet. Our results suggest that TransUNet can leverage the advantages of both
convolutional and transformer modules to achieve better performance for WSI segmentation.
Convolutional modules can capture local and hierarchical features in images, while transformer
modules can model global and contextual information across the whole image. By combining
these two types of modules, TransUNet can learn more e�ectively from the data and generalize
better to unseen data.

Our work has several implications and contributions for the �eld of computer vision and medical
image analysis. First, we have demonstrated that transformers can be successfully applied to
WSI segmentation, a challenging task that requires high-resolution and �ne-grained analysis of
complex images. Second, we have provided empirical evidence that our model can outperform
a strong baseline model on a large-scale dataset of WSI from IvyGAP. Third, we have shown
that our model can produce high-quality segmentation maps that can facilitate the diagnosis and
treatment of brain tumors.
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Figure 3.6: Qualitative comparison of segmentation results for TransUNet and UNet on four
WSI samples. The �rst column shows the original WSI images, the second column
shows the ground truth labels, the third column shows the segmentation maps
produced by TransUNet, and the fourth column shows the segmentation maps
produced by UNet. It can be seen that TransUNet generates more precise and
smooth boundaries between di�erent tissue types and preserves more details and
structures than UNet.
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3.5 Conclusion

In this chapter, we have explored various methods to identify regions of interest in whole slide
images. This task is essential for pathologists and real world applications, as it can enable faster
and more e�cient work�ows for medical purposes, and uncover new insights from slides. First,
we presented an example of a self-supervised method that uses the DINO algorithm applied to
Vision Transformers. We showed that the weights of attention heads trained using contrastive
learning can generate attention maps that highlight unusual or abnormal features within a whole
slide. Second, we introduced a weakly supervised method that uses Transformer Interpretability.
This method employs a gradient-based approach to compute the relevancy map of the input
given a speci�c output. In other words, this allows us to train a model for classi�cation and
then, given a speci�c class, we can locate the regions of the image that are most relevant to
that class. Finally, we implemented an example of a strongly supervised method that uses
TransUNet, which combines convolutional and transformer modules for WSI segmentation. We
demonstrated that this method can surpass UNet models on a large-scale dataset of WSI from
IvyGAP.
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4.1 Introduction

Uncertainty estimation is an important and often overlooked aspect of machine learning. In
many real-world applications, it is crucial not only to make accurate predictions, but also to
quantify the uncertainty in these predictions. For example, in autonomous driving, if the model
is not sure about its prediction, it may result in a safer decision being taken, such as slowing
down or stopping the vehicle. Similarly, in medical diagnosis, a doctor needs to be aware of the
uncertainty in a prediction made by a machine learning model in order to make a more informed
decision.

Given the importance of uncertainty estimation in machine learning, it is worth exploring the
various methods that have been developed to address this challenge. In this report, we will take
a closer look at two popular methods for uncertainty estimation in machine learning: Bayesian
Neural Networks Blundell et al. 2015 and Ensemble methods Ovadia et al. 2019. Bayesian
Neural Networks are a type of neural network that incorporate Bayesian methods to estimate
the uncertainty in the predictions of the model. Ensemble methods, on the other hand, are
based on the idea of combining the predictions of multiple models to produce a more accurate
and uncertain prediction.

However, despite the success of these traditional methods, there is still room for improvement.
In particular, Bayesian Neural Networks can be computationally intensive, and Ensemble meth-
ods can be di�cult to implement and can increase the complexity of the model. To address
these limitations, we will introduce Posterior Network, a state-of-the-art model for uncertainty
estimation in machine learning. Posterior Network (Charpentier, Zügner, et al. 2020) combines
the bene�ts of Bayesian Neural Networks and Ensemble methods, and provides a powerful tool
for uncertainty estimation. In the following sections, we will explore the details of Posterior Net-
work, its performance on various datasets, and how it compares to other methods for uncertainty
estimation in machine learning.

Furthermore, we will also explore the use of Posterior Network for dataset cleaning. Dataset
cleaning is a process in which the model is used to identify and remove outliers from the dataset.
This is particularly relevant to the work of the Yu Lab as the Glioblastoma dataset IvyGAP
contains an unknown amount of mislabeled samples. We will evaluate how Posterior Network
can be used to estimate the con�dence of a model prediction, but also the uncertainty of labeling
of data, and show that an uncertainty-aware model outperforms models trained on mislabeled
samples.

4.2 Uncertainty Theory and Related Work

Uncertainty estimation in machine learning is a complex and multi-disciplinary �eld that draws
upon the theories and methods from mathematics, statistics, and computer science. At its core,
uncertainty estimation involves quantifying the level of con�dence in the predictions made by a
machine learning model. To achieve this, one must �rst understand the sources of uncertainty in
the model, which can be classi�ed into two main categories: aleatoric uncertainty and epistemic
uncertainty.

Aleatoric uncertainty captures the inherent noise or randomness in the data and is inherent
to the problem being solved. For example, in a prediction task for the height of a person,
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Figure 4.1: A Neural Network with �xed weights (left) and a Bayesian Neural Network (right).
The parameters of the neural network are treated as random variables and are given
a prior distribution.

the measurement of a person's height might have some random error, leading to a degree of
uncertainty in the prediction. Aleatoric uncertainty can be modeled using probabilistic models
such as Gaussian distributions, where the variance of the distribution represents the level of
uncertainty in the prediction.

Epistemic uncertainty, on the other hand, captures the uncertainty in the model's parame-
ters due to limited data. This type of uncertainty can be reduced as more data is collected,
or as the model is improved to better capture the underlying patterns in the data. Epis-
temic uncertainty can be modeled using Bayesian methods, where the model's parameters are
treated as random variables and their distribution represents the level of uncertainty in the
model.

Models like Bayesian Neural Networks and Ensemble methods aim to estimate and reduce the
epistemic uncertainty by combining the predictions of multiple models or modeling the param-
eters as random variables. However, these methods can be computationally intensive, and can
be di�cult to implement. Furthermore they do not address the question of data and labeling
uncertainty, i.e aleatoric uncertainty.

4.2.1 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) Blundell et al. 2015 are a type of deep learning model that
combine the expressive power of neural networks with the probabilistic framework of Bayesian
inference. This integration provides a natural way to estimate the uncertainty in the predictions
made by the model, making BNNs an important tool for uncertainty estimation in machine
learning. At its core, a BNN is a feedforward neural network with a probabilistic interpretation.
In a standard neural network, the parameters of the model are treated as �xed, determinis-
tic values that are learned from the training data. In contrast, in a BNN, the parameters are
treated as random variables and are given a prior distribution that represents our prior knowl-
edge about their values. During training, the model uses the training data to update its beliefs
about the parameters and compute the posterior distribution, which represents the model's up-
dated knowledge about the parameters. The posterior distribution can then be used to make
probabilistic predictions about the target variable and estimate the uncertainty in these predic-
tions.

The key to making a neural network Bayesian is to introduce a prior distribution over the model
parameters. The choice of prior distribution will depend on the speci�c problem and the available
prior knowledge. Common choices include Gaussian distributions, which are suitable for problems
where the parameters are expected to have smooth and continuous values, and Dirichlet distri-
butions, which are suitable for problems with categorical parameters. The posterior distribution
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is then computed using Bayes' theorem (4.1), which states that the posterior is proportional to
the product of the likelihood function and prior, given the training data. The likelihood function
represents the probability of observing the training data given the model parameters, and is
typically estimated using maximum likelihood estimation.

P (θ|D) ∝ P (D|θ)P (θ) (4.1)

The ability to assign distributions to model parameters and predictions provides a crucial ad-
vantage in estimating uncertainty. By computing the variance of these distributions, we can
accurately gauge our level of uncertainty, particularly when working with small datasets where
standard neural net training is prone to over�tting. In addition to providing a way to estimate
uncertainty, BNNs have several other advantages over standard neural networks. Firstly, they
are more robust to over�tting, as the model is less likely to over�t to the training data when
the parameters have a prior distribution. Secondly, they are more interpretable, as the posterior
distribution provides a way to quantify the uncertainty in the parameters and the predictions.
Finally, they provide a way to incorporate prior knowledge into the model, which can be useful
when there is limited data or when the data is noisy (Gal et al. 2016).

The main disadvantage of BNNs is that they can be computationally expensive, as computing
the posterior distribution requires evaluating the likelihood function for a large number of pa-
rameter values. To address this issue, several methods have been proposed to approximate the
posterior distribution, including variational inference and Monte Carlo methods. These methods
are designed to be fast and computationally e�cient, while still providing a good approximation
of the posterior distribution.

In conclusion, Bayesian Neural Networks are an important tool for uncertainty estimation in
machine learning, providing a natural way to estimate the uncertainty in the predictions made
by the model. By combining the expressive power of neural networks with the probabilis-
tic framework of Bayesian inference, BNNs o�er several advantages over standard neural net-
works, including robustness to over�tting, interpretability, and the ability to incorporate prior
knowledge. Despite their computational complexity, recent advances in approximation methods
have made BNNs a practical and valuable tool for a wide range of machine learning applica-
tions.

4.2.2 Dropout and Ensemble Methods

Ensemble methods and dropout are two important techniques used in machine learning for
improving the performance of models and handling uncertainty. These techniques can be used
separately or in combination to build models that are robust, accurate, and provide reliable
predictions. In this report, we will discuss these techniques in detail and explore how they can
be used to estimate uncertainty in machine learning models.

Ensemble

Ensemble methods are a class of machine learning algorithms that build multiple models and
combine their predictions to make a �nal prediction. The idea behind ensemble methods is that
by combining the predictions of multiple models, we can produce a �nal prediction that is more
accurate than the prediction of any single model. Ensemble methods are widely used in machine
learning and have been shown to be very e�ective in improving the performance of models in a
wide range of applications.
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There are several types of ensemble methods, including bagging, boosting, and stacking:

1. Bagging: Bagging (bootstrapped aggregating) is a simple ensemble method that involves
building multiple models, each trained on a random subset of the data, and combining their
predictions by taking a majority vote or by averaging. Bagging is e�ective in reducing the
variance of the model, which makes it less sensitive to outliers and �uctuations in the data.

2. Boosting: Boosting is an ensemble method that builds a sequence of models, each of
which tries to correct the mistakes made by the previous model. The models are weighted
according to their accuracy, and the �nal prediction is made by combining the predictions
of all the models. Boosting is e�ective in reducing the bias of the model, which makes it
more accurate in generalizing to new data.

3. Stacking: Stacking is an ensemble method that involves building multiple models and
combining their predictions by training a �nal model to make the �nal prediction. The
�nal model is trained on the predictions of the individual models, rather than on the raw
data. Stacking is a �exible ensemble method that can be used with any type of model and
can be used to combine models of di�erent types.

Ensemble methods are powerful techniques that can be used to improve the performance of ma-
chine learning models and handle uncertainty. By combining the predictions of multiple models,
ensemble methods can produce a �nal prediction that is more accurate than the prediction of
any single model. Furthermore, ensemble methods can be used to reduce the variance and bias
of the model, which makes the �nal prediction more reliable.

Dropout

Dropout is a regularization technique used in machine learning to prevent over�tting and improve
the generalization of models. Dropout works by randomly dropping out (i.e., setting to zero)
a fraction of the neurons in the network during each training iteration. This means that the
network is forced to learn multiple representations of the data, as di�erent neurons are dropped
out at di�erent times. The �nal prediction is made by averaging the predictions of all the neurons
in the network.

It is a simple and e�ective technique that can be used to improve the generalization of deep
neural networks. By forcing the network to learn multiple representations of the data, dropout
can prevent over�tting and improve the performance of the model on new data. Furthermore,
dropout can be used in combination with other techniques, such as ensemble methods, to further
improve the performance of the model.

Uncertainty Estimation with Ensemble Methods and Dropout

Ensemble methods and dropout can be used in combination to estimate uncertainty in machine
learning models. By building multiple models and combining their predictions, ensemble methods
can provide a measure of the variability of the predictions, which can be used as an indicator
of the uncertainty in the predictions. For example, if the predictions of the individual models
in an ensemble are highly varied, this suggests that the model is uncertain about the correct
prediction, and the �nal prediction should be viewed with caution.

Similarly, dropout can be used to estimate the uncertainty of deep neural network models by
using dropout at test time. At test time, the network is used multiple times with di�erent
dropout masks, and the �nal prediction is made by averaging the predictions of all the runs.
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The variance of the predictions can be used as a measure of the uncertainty in the predic-
tions.

In practice, ensemble methods and dropout can be used in combination to build models that
provide both accurate predictions and reliable estimates of uncertainty. For example, a deep
neural network can be trained with dropout to prevent over�tting and improve the generalization
of the model. Then, multiple models can be built using di�erent subsets of the data, and
their predictions can be combined using an ensemble method to produce a �nal prediction.
The variance of the predictions from the individual models can be used as an estimate of the
uncertainty in the �nal prediction.

4.2.3 Con�dent Learning

Con�dent learning(CL) is a data-focused approach that centers on the quality of labels, as op-
posed to just the predictions of the model (Northcutt et al. 2022). Unlike traditional methods
that concentrate on the model's predictions, CL takes into account the quality of the data
by identifying and removing label errors in the dataset. The approach involves pruning noisy
data, determining the amount of noise through probabilistic thresholds, and prioritizing exam-
ples to train with a higher degree of con�dence. In this way, CL provides a comprehensive
solution for ensuring the quality of labels, which is essential for accurate machine learning.
In other words, when Bayesian and Ensemble methods focused on estimating epistemic uncer-
tainty, Con�dent Learning provides a way to �nd and reduce the aleatoric uncertainty in the
dataset.

The method used by Con�dent Learning is to estimate the joint distribution between the observed
labels (prone to error and noise) and the latent labels (predicted by the model). Con�dent
Learning only takes two inputs to �nd samples that may be mislabeled: the noisy labels and the
predicted class probabilities by the model. Indeed, this approach is model agnostic as long as
the model can provide class probabilities. CL can directly �nd noisy labels by following three
steps:

1. Estimate the joint distribution: The �rst step is to estimate the joint distribution
between the observed labels and the latent labels. Given a noisy label ỹ and a potentially
unknown true label y∗, then Qỹ,y∗ is the matrix of joint distributions p(ỹ, y∗). We can
empirically estimate this matrix by counting the number of samples that are predicted as
ỹ and have a true label y∗. This empirical estimate is noted as Q̂ỹ,y∗ .

2. Filtering out the noisy labels: The second step is to �lter out the noisy labels. The
noisy labels are those that are predicted as ỹ but have a true label y∗ that is di�erent from
ỹ. Using the matrix Q̂ỹ,y∗ , we can count the set of samples that are not in the diagonal to
estimate the labeling error.

3. Training without the noisy labels: The third step is to train the model without the
mislabeled samples, that have been pruned in the previous step. To keep the model's
exposure to each class equal, CL use class weighting. The sample are reweighted with the
class weight Q̂y∗ [i]/Q̂ỹ,y∗ [i][i], where Q̂y∗ [i] := p(y∗ = i) is the prior of the latent label i,
and Q̂ỹ,y∗ [i][i] := p(ỹ = i, y∗ = i) is the discrete joint probability of the noisy and true
label being both equal to class i.

This pipeline is illustrated in the following �gure 4.2. First, the model θ is trained on the
noisy labels ỹ. The model produces noisy predicted probabilities and classes. Cleanlab, the
python framework developed for Con�dent Learning, is used at that stage to estimate the joint
probability between the noisy and true labels, by counting the number of samples that are
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predicted as ỹ and have a true label y∗. In this example, we see in the confusion matrix that
56 samples were predicted as fox when they were actually a dog. One way to remove is to rank
the samples by predicted probabilities in the wrong class, e.g we could keep the n-th samples
that predicted fox instead of dog that have the lowest "fox" probability, or the greatest "class"
probability. Finally we obtain a cleaner dataset, which can be used again for a new round of
Con�dent Learning.

Figure 4.2: Con�dent Learning estimating the joint distribution between the observed labels
and the latent labels.

In the context of her capstone project at the Yu Lab, graduate student Liza Mathews evaluated
Con�dent Learning and its performance in improving model accuracy in the Glioblastoma dataset
IvyGAP. She found that while Con�dent Learning was great at �nding mislabeled samples in
IvyGAP, removing those samples from the dataset had a marginal impact on the validation and
test accuracy of this model. In the next section, we will evaluate Posterior Network (Charpentier,
Zügner, et al. 2020, Charpentier, Borchert, et al. 2022), a Bayesian Neural Network-like approach
to estimate distributions of predicted probabilities.

4.3 Posterior Network: OOD detection without OOD data

4.3.1 Introduction & Motivations

Quantifying uncertainty in predictions made by neural networks is crucial for ensuring the re-
liability of Machine Learning systems, especially in sensitive domains such as robotics, �nance,
and medicine. Knowing the level of uncertainty in their predictions enables AI systems to adapt
to new situations and avoid making decisions in uncertain or dangerous conditions. Despite
its importance, traditional neural networks often exhibit overcon�dent predictions, even when
dealing with data that is signi�cantly di�erent from the training data.

It is important to di�erentiate between two types of uncertainty in neural network predictions:
aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty arises from the inherent
randomness of the data, such as the 50/50 chance of �ipping a fair coin or the labeling process.
Epistemic uncertainty, on the other hand, stems from the model's lack of knowledge of the
data.

The estimation of uncertainty in neural networks is a rapidly growing research area, with var-
ious approaches being developed, including Bayesian Neural Networks (4.2.1), ensembles, and
drop-out (4.2.2). Bayesian Neural Networks learn a distribution over the weights, while en-
semble methods use a collection of sub-models to estimate the mean and variance of the class

42



4.3 Posterior Network: OOD detection without OOD data

probability distribution. Drop-out, too, has demonstrated remarkable performance in uncer-
tainty estimation. However, these methods rely on implicit distributions for predictions and
require a computationally expensive sampling phase for uncertainty estimation during inference
time.

Traditionally, machine learning models would be trained on both in-distribution (ID) and out-
of-distribution (OOD) samples, such as MNIST and FashionMNIST, to identify similar OOD
samples during inference. However, Charpentier, Zügner, et al. 2020 have found that denying ac-
cess to explicit OOD data during training can result in poor performance using these approaches.
Surprisingly, these models exhibit increasingly con�dent predictions even for samples that are
signi�cantly di�erent from the observed data.

In response to these limitations, Charpentier, Borchert, et al. 2022 propose the Posterior Net-
work (PostNet), which assigns high epistemic uncertainty to out-of-distribution samples, low
overall uncertainty in regions close to observed data of a single class, and high aleatoric and low
epistemic uncertainty in regions close to observed data of di�erent classes. PostNet leverages
normalizing �ows to learn a distribution over Dirichlet parameters in the latent space. They
enforce the densities of individual classes to match the number of training samples in that class,
aligning with the intuition that Dirichlet parameters correspond to the number of observations
per class.

Figure 4.3: PriorNet (Malinin et al. 2018) Posterior Net (Charpentier, Borchert, et al. 2022).

PostNet o�ers several advantages over traditional models, as it does not require any OOD sam-
ples for training, the speci�cation of target prior distributions, or costly sampling for uncertainty
estimation during inference time. This makes PostNet a promising approach for uncertainty
estimation in machine learning. In �gure 4.3, we can see a comparison of the predicted uncer-
tainty on MNIST between the PriorNet (Malinin et al. 2018) and the Posterior Net (Charpentier,
Borchert, et al. 2022). In both networks, the last step before inference was set to be a latent space
of dimension 2 for visualization purposes. In sub�gure (b) and (d) are visualized the uncertainty
estimation of PriorNet and PostNet, where dark colors correspond to high uncertainty and light
colors correspond to low uncertainty. We can see that beyond the training data, the PriorNet is
overly con�dent in the overall uncertainty of the classes, whereas PostNet uncertainty evaluation
is much more similar to the actual representation of the classes. Furthermore, we can note that
PriorNet was trained with OOD samples, while PostNet was not.

4.3.2 Theory and Formulation

Previous approach to uncertainty estimation

First, we will describe mathematically the motivations behind uncertainty estimation, and how
aleatoric and epistemic uncertainty plays a role in predicting the correct class for a given sample.
Consider a sample x and a label y, in the context of this report x could be a patch from a whole
slide image and y could be the patch class. As we have discussed previously, Bayesian Neural
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Networks (4.2.1) models the distribution of the parameters w of the model θ, trained on a dataset
D = {(xi, yi)}Ni=1 for a given sample x, in other words the predictive uncertainty of a model for
classi�cation is P (w|x,D) . Using Bayes' rule (4.1), we can write the posterior distribution of
the parameters w as:

P (w|x,D) =
∫

P (w|x, θ)︸ ︷︷ ︸
Data

P (θ|D)︸ ︷︷ ︸
Model

dθ (4.2)

The estimate of the uncertainty of the model's weights (LHS) can be described by an uncertainty
tied to the data and the model (RHS). We will formally denote the aleatoric uncertainty

as P (w|x, θ), and the model uncertainty P (θ|D). As this integral is not explicit for neural
networks, approaches like Monte-Carlo dropout (4.2.2) and Bayesian Neural Networks (4.2.1)
rely on sampling multiple models to have an estimate of the uncertainty:

P (w|x,D) ≈ 1

M

M∑
i=1

P (w|x, θ(i)) (4.3)

where θ(i) is a sampled model from the epistemic distribution q of the categorical distribu-
tion prediction. In other words, given a sample x, in order to estimate the uncertainty of
the model's weights, we can sample an ensemble of categorical distributions P (w|x, θ(i)), using
models θ(i) sampled from the epistemic distribution q of categorical distribution predictions.
Each P (w|x, θ(i)) is a categorical distribution over the classes. This makes Monte-Carlo dropout
methods expensive as we need to train M models to have the estimate of the uncertainty. Fur-
thermore, for a given x, this approach can be modeled on a simplex. Each P (w|x, θ(i)) produces
a set of probabilities for each class given x. On a simplex, each vertex is a di�erent class, and
the accumulation of the M categorical distributions provides a way to estimate and visualize the
uncertainty of the model's weights. In this particular example, the uncertainty is low as most
models of the ensemble are close to the top vertex.

Posterior Network approach to uncertainty estimation

We will know describe the framework of Posterior Network for uncertainty estimation. While we
will change the notation to match Charpentier, Zügner, et al. 2020, we will maintain the goal
of the previous subsection of estimating the predictive uncertainty of model for classi�cation.
Given an input x(i), there is uncertainty of the class prediction y(i) and the uncertainty of

the model distribution prediction p(i) = [p
(i)
1 , ..., p

(i)
C ]. In other words, there is the aleatoric

uncertainty of the prediction made for sample x(i), and the epistemic uncertainty of the model
distribution prediction. For example, a sample x(i) could have the correct label prediction y(i)

by the model, but p(i) could be close to equal to a uniform distribution. This would be a low
aleatoric uncertainty but high epistemic uncertainty.

44



4.3 Posterior Network: OOD detection without OOD data

The approach to unify aleatoric and epistemic uncertainty notation is to de�ne the epistemic
distribution q(i) of the categorical prediction p(i). This is equivalent to saying that p(i) the
distribution of predictions for a sample x(i) is sampled from q(i). If we sample enough distribution
of predictions p(i) from q(i), we can now de�ne the aleatoric distribution of the class prediction
y(i) as y(i) ∼ Cat(p̄(i)), where p̄(i) is the expected mean of distribution of predictions p(i). Since
p(i) is sampled from q(i), we write p̄(i) = Eq(i) [p

(i)].

Regarding the previous subsection, Eq(i) [p
(i)] is analogous P (w|x,D) and P (w|x, θ(i)) would be

sampled from q(i).

Going back to Posterior Network, the authors have modeled the epistemic distribution q(i) as

Dirichlet distribution with parameter α(i) = [α
(i)
1 , ..., α

(i)
C ], where α(i) is the result of a model

(potential a deep encoder) fθ such that fθ(x
(i)) = α(i). We obtain:

1. The epistemic distribution: q(i) = Dir(α(i))

2. The aleatoric distribution: p̄
(i)
c = αc

α0
where α0 =

∑C
c=1 αc

3. The class prediction: y(i) = argmaxc p̄
(i)
c

Bayesian Update

Given data points {y(j)}nj=1, how do we perform an update of the parameter p of the categorical
distribution y ∼ Cat(p)? We will use Bayes' rule and properties of the Dirichlet distribution in
order to �nd the update rule.

In this case, Bayes's rule for the update of the parameter p is:

P(p|{y(j)}nj=1) ∝ P({y(j)}nj=1|p) · P(p) (4.4)

First, recall that since p is drawn from q, and q = Dir(α), we can introduce a prior Dirichlet
distribution, in other words, P(p) = Dir(βprior) with βprior ∈ RC

+. Second, we can estimate the
likelihood P({y(j)}nj=1|p) by empirical counting the number of times each class c is observed in

the data {y(j)}nj=1. This latter quantity is denoted βdata
c :=

∑
j 1y(j)=c. Finally, we can now

use the property that the Dirichlet distribution to provide the distribution of the LHS. Since
the LHS of the equation has a prior Dirichlet P(p) and the data points follow a categorical
distribution, we have that P(p|{y(j)}nj=1) = Dir(βprior + βdata). We have found the bayesian
update rule for the categorical distribution using the parameters of the prior and a count of the
labels.

Learning distributions within a latent space

As we have discussed in the previous subsection, we can provide the distribution and an update
rule to the categorical distribution if the labels y are explicit. Posterior Network does not learn
directly from the labels but from a latent space, with the intent of having more �exibility in
describing the distribution space. The input x is passed through an encoder fθ and results into
a latent space, i.e fθ(x) = z ∈ Rlatent. The posterior predictions are modeled from normalizing
�ow ϕ. Hence, we obtain a probability distribution P(z|c;ϕ) which models the probability that
z belongs to the class c in the latent space, which is modeled after a normalizing �ow. Going
back to the bayesian update 4.4, how can we de�ne βdata in terms of elements z in the latent
space
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Let xi be an input, we recall that z(i) = fθ(x
(i)) is the mapping of the input within the latent

space. Then we have that P(z(i)|c;ϕ) is the probability that we observed z(i) in the class c and
generated by the distribution ϕ. Hence if Nc is the number of ground truth observations in
class c, we obtain that Nc · P(z(i)|c;ϕ) is the number of observations of class c that would also
be mapped at z(i) in the latent space. This is analogous to the quantity βdata

c in the previous
subsection, hence we can de�ne:

β(i)
c = Nc · P(z(i)|c;ϕ) = N · P(c) · P(z(i)|c;ϕ) (4.5)

Using Bayes's rule, we can expend the RHS:

β(i)
c = N · P(c) · P(z(i)|c;ϕ) = N · P(c) · P(c|z;ϕ)P(z;ϕ)

P(c)
(4.6)

= N · P(c|z;ϕ)P(z;ϕ) (4.7)

Going back to the subsection 4.3.2, we recall that the goal of most uncertainty models is to
estimate the distribution of predictions for a sample x(i), i.e p̄(i) = Eq(i) [p

(i)]. We have found that

p(i) follows a Dirichlet distribution Dir(βprior + β
(i)
c ). Since the mean of a Dirichlet distribution

is explicitly know, we can compute the estimator of the distribution of predictions for a sample
x(i):

Ep∼Dir(α(i) [pc] =
βprior
c +N · P(c|z;ϕ)P(z;ϕ)∑

c β
prior
c +N · P(z(i);ϕ)

(4.8)

From Charpentier, Zügner, et al. 2020 we can observe intuitive observations from the above
equation. First for out-of-distribution data, we would have P(z;ϕ) ≃ 0, hence the aleatoric
distribution pc would converge to a �at prior distribution, for example if β

prior = 1, then pc = 1/c
for out-of-distribution sample.

Second, we observe that increasing the size of the dataset N to in�nity brings pc to be equal to
P(c|z;ϕ), which is the class posterior.

4.3.3 Architecture overview and loss function

Architecture

Figure (4.4) gives an overview of the Posterior Network. It depicts three example inputs, x(1),
x(2), and x(3), that are passed through the encoding neural network fθ, resulting in their respec-
tive latent space coordinates z(i). The normalizing �ow component is responsible for learning
�exible (normalized) density functions P (z|c;ϕ), which are evaluated at the positions of the la-
tent vectors z(i). These densities are then used to parameterize a Dirichlet distribution for each
data point. The con�dence in the Dirichlet distributions is determined by the density values,
with higher densities indicating higher con�dence. The sample x(3) is mapped to a point with (al-
most) no density, resulting in a predicted Dirichlet distribution with high epistemic uncertainty.
Sample x(2) is ambiguous and could depict either the digit 0 or 6, resulting in a Dirichlet distribu-
tion with high aleatoric uncertainty but low epistemic uncertainty. In contrast, the unambiguous
sample x(1) has low overall uncertainty. Both the encoding network fθ and the normalizing �ow,
parameterized by ϕ, are fully di�erentiable, allowing for their parameters to be learned jointly
in an end-to-end fashion.
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Figure 4.4: Posterior Network architecture

Uncertainty aware loss function

Recall that Posterior Network learns an epistemic distribution q(i) for each sample x(i), such
that q(i) is as close as possible to the true posterior distribution of the categorical distribution
p(i) which is estimated from the training data. The parameters that we are trying to optimize are
the parameters of the encoding network fθ and the parameters of the normalizing �ow ϕ. The
objective function of Posterior Network consists of two components: the expected negative log-
likelihood of the data given the model predictions and the entropy of the approximate posterior
distribution over the model parameters. The �rst component evaluates the accuracy of the
model predictions, while the second component acts as a regularizer that avoids over�tting and
promotes smoothness. The objective function can be expressed as:

min
θ,ϕ

L = min
θ,ϕ

1

N

N∑
i=1

Eq(i) [CE(p(i), y(i))]−H(q(i)) (4.9)

where p(i) is the predicted categorical distribution, y(i) is the one-hot encoded true class, q(i) is
the approximate posterior distribution over the model parameters θ, and H(q(i)) is the entropy
of q(i). Optimizing this objective function approximates the true posterior distribution for the
categorical distribution p(i). The �rst component corresponds to the Uncertain Cross Entropy
loss (UCE), which is known to increase con�dence for observed data. The second component is
an entropy regularizer. Because entropy regularizer employs the product logarithm of the density
with the density, the term H is bounded by 1 and is minimized when the values of p(i) are close
either to 1 or 0, with maximum at 0.5. Hence minimizing −H comes to maximizing H, where
most values of the density p(i) are close to 0.5, promoting class diversity.

4.4 Posterior Network for Uncertainty Prediction on IvyGAP

4.4.1 Introduction & Motivation

As we have discussed, Glioblastoma is a highly aggressive and heterogeneous brain tumor that
poses signi�cant challenges for diagnosis, prognosis, and treatment. Accurate segmentation
of glioblastoma from magnetic resonance imaging (MRI) scans is crucial for clinical decision
making and planning of surgical resection and radiotherapy. However, manual segmentation is
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time-consuming, labor-intensive, and prone to inter- and intra-observer variability. Therefore,
automated segmentation methods based on deep neural networks are a natural contender for
segmentation and classi�cation of these patches. However, these methods often su�er from over-
con�dence and lack of generalization, especially when faced with unseen or rare cases. Therefore,
it is important to estimate the uncertainty of the segmentation predictions, which can provide
useful information about the reliability and con�dence of the model, as well as identify poten-
tial errors and outliers. Posterior Network is a novel framework for uncertainty estimation that
leverages variational inference and implicit amortized �ow to approximate the true posterior
distribution over the model parameters given the data. Posterior Network can capture both
aleatoric and epistemic uncertainty, as well as provide calibrated and sharp predictive distribu-
tions. In this paper, we apply Posterior Network to the task of glioblastoma segmentation on the
IvyGAP dataset, which contains high-resolution MRI scans of 50 patients with glioblastoma. We
evaluate Posterior Network on the IvyGAP dataset, in order to draw insights of which classes and
samples may be problematic. In a later section, we will discuss how we can use the uncertainty
estimates to clean the dataset and improve the accuracy of the model.

4.4.2 Experimental Method

In order to obtain a model calibrated for uncertainty estimation on IvyGAP, by Charpentier,
Zügner, et al. 2020 there are two steps. First, train PostNet using a desired encoder fθ and
hyper-parameters, with the intent to minimize the Brier Score. The Brier Score is a metric
that measures the square di�erence between two distributions. By using this metric as our
uncertainty calibration metric, we ensure that the densities p(i) are as closed as possible of the
one hot encoded true class y(i). Second, we will need an Out of Distribution dataset to assert that
we have a calibrated classi�er of In Distribution vs Out of Distribution samples. In their work,
the authors of Posterior Network have used CIFAR10 for In Distribution samples and SVHN for
Out of Distribution samples. In our case, we will use IvyGAP dataset and Renal Cancer Dataset
for Out of Distribution data, as this dataset can be out of distribution in terms of the tumor
type.

The hyper-parameters tuned in this tasks are the dimension of the latent-space l, in range 2 to 8,
the number of layers of the normalizing �ow f in range 1 to 4, the learning rate lr in range 0.0002
to 0.00001 with a maximum of 40 epochs. To assert the best model, we used a weighted sum
of the Brier Score, Epistemic Uncertainty and Aleatoric Uncertainty. This allow the model to
provide accurate prediction by minimizing the Brier Score, but also to maximize its con�dence.
We used the following weighted sum:

Calibration Metric =
1

3
· Epistemic Con�dence+ 1

3
·Aleatoric Con�dence− 1

3
· Brier Score

The model architecture is a Vision Transformer with patch size 8 (Dosovitskiy et al. 2021), and
the sweep was done using multiple RTX 8000 GPUs with 48GB of memory with a batch size of
8.

Results

Tunning the hyper-parameters of the model, we obtained a model for which the Brier Score
is 0.278 (lower is better) and an accuracy of 0.828 on our test set. The results are in the
range of Charpentier, Borchert, et al. 2022, where they found a Brier Score of 0.228 and accu-
racy of 0.8485 on CIFAR10 for In-Distribution data. To validate this model, we will perform

48



4.4 Posterior Network for Uncertainty Prediction on IvyGAP

OOD detection using the same procedure as the authors of PostNet, which is to say evaluat-
ing the OOD detection using an external dataset. While they used CIFAR10 and SVHN for
In-Distribution and Out of Distribution data, we will use the IvyGAP dataset and the Renal
Cancer Dataset for In-Distribution and Out of Distribution data. The results are shown in Table
4.1.)

(a) PR curve for the calibrated model (b) ROC curve for the calibrated model

Figure 4.5: AUC scores for aleatoric and epistemic con�dence

The resulting area under PR curve and ROC curve are shown in table 4.1. We see that as
binary classi�er of OOD vs ID data, PostNet can learns without OOD data if a new external
dataset is similar to the data seen during training. In the next section, we will look closer at
the uncertainty evaluation per class on IvyGAP and try to draw insights using this calibrated
model.

Table 4.1: AUC scores for aleatoric and epistemic con�dence

Con�dence Type AUC-PR AUC-ROC

OOD Detection Aleatoric 0.7808 0.8502

OOD Detection Epistemic 0.7405 0.7550

Uncertainty distribution on IvyGAP

Furthermore, we can now visualize for each class within IvyGAP the aleatoric and epistemic
distribution. The results are shown on �gure 4.6. As a reminder, visualizing the epistemic
uncertainty distribution of a calibrated model would tell us which classes the model has low or
high con�dence on its prediction. Similarly, the aleatoric uncertainty distribution will provide
insights on the model's con�dence on the original data and potentially reveal issues with its
labels.

By analyzing the uncertainty distributions for each class in IvyGAP, we can gain a better under-
standing of the model's performance and identify potential areas for improvement. For example,
if we observe high epistemic uncertainty for a particular class, this may indicate that the model
requires more data or that the data for that class is particularly noisy or di�cult to classify.
If we observe high aleatoric uncertainty for a particular class, this may suggest that the data
for that class is inherently ambiguous or that the labels are not well-de�ned. In either case,
this information can be used to guide future data collection e�orts or to re�ne the labeling
process.
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Class Median Alea. Mean Alea. Median Epist. Mean Epist

con�dence con�dence con�dence con�dence

Cellular Tumor (CT) 0.9986 0.9221 0.9416 0.7169

Necrosis (CTne) 0.9910 0.9357 0.8558 0.7180

In�ltrating Tumor (IT) 0.8878 0.7925 0.2539 0.4099

Leading Edge (LE) 0.8479 0.7665 0.0719 0.1793

Background 0.8355 0.8325 0.0597 0.2158

Table 4.2: Median and mean values of aleatoric and epistemic con�dence for each class, with
the best value in bold.

In table 4.2 we can see that Cellular Tumor and Necrosis reached a high level of aleatoric and
epistemic con�dence, which can be expected as these classes are well de�ned in the dataset and
are most present within the dataset. On the other hand, the classes In�ltrating Tumor, Leading
Edge and Background have a lower aleatoric and epistemic con�dence. Leading Edge (LE) is
the class with the lowest mean Epistemic and Aleatoric Con�dence. As we have discussed in the
chapter 1, this may be due to the number of samples present in the dataset, but also ambiguity
with In�ltrating Tumor. In �gure 4.7, we have shown the confusion matrix of predictions made by
the PostNet model. We observe a similar pattern that comes to con�rm our �ndings. In�ltrating
tumor is confused with Cellular Tumor and Leading Edge, and Leading Edge is confused with
In�ltrating Tumor.

(a) Epistemic uncertainty distribution (b) Aleatoric uncertainty distribution

Figure 4.6: AUC scores for aleatoric and epistemic con�dence

In this section, we have seen how we could calibrate our uncertainty estimator by minimizing
the Brier Score as long as a curated Calibration Score. We have also seen how we could use
the calibrated model to perform OOD detection, using the Renal Cancer Dataset as an external
dataset. We have found a similar performance to the original paper in terms of model accuracy
and uncertainty estimation. Finally, we have visualized the performance of the uncertainty
estimator on the IvyGAP dataset, and we have found that the model has a high con�dence on
the classes Cellular Tumor and Necrosis, and a lower con�dence in the classes In�ltrating Tumor,
Leading Edge and Background. This can be explained by the number of samples present in the
dataset, but also by the ambiguity between these classes.

In the following section, we will look at how we can �lter out the data that is most uncertain,
and how we can use this data to improve the model's performance.
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4.5 Posterior Network for Dataset Cleaning

Figure 4.7: Confusion Matrix for the predictions of the calibrated model, normalized for each
row.

4.5 Posterior Network for Dataset Cleaning

4.5.1 Introduction

In the previous section, we have seen how samples from IvyGAP could be prone to errors in their
labels. We have calibrated a model for uncertainty prediction, which has allowed us to identify the
samples that are most uncertain in terms of label con�dence (aleatoric) or prediction con�dence
(epistemic). In this section, we will leverage this Uncertainty estimator to �lter out the samples
that are most uncertain, and we will use this data to improve the model's performance. More
generally, we will describe a pipeline for uncertainty estimation which could be used for models
applied to challenging datasets. In our experiments, we have seen an improvement in model
accuracy on validation of up to 1.5 points, when removing the 15% most uncertain samples from
the dataset. By removing the most uncertain samples from the dataset, we can create a cleaner
and more reliable training set for our models. This is especially useful in situations where the
dataset is noisy or has a high degree of label uncertainty.

4.5.2 Method

Following the results of the calibrated uncertainty estimator PostNet in section 4.4.2, we can
now describe and motivate a pipeline for dataset �ltering, with the intent of improving the
model's performance on validation. First, a PostNet model is trained for uncertainty prediction,
to minimize the Brier Score on validation. Once we obtain this calibrated model, we evaluate
the aleatoric uncertainty of each sample in the dataset, as we have done in Figure 4.6. We
then remove the p-% of samples with the highest aleatoric uncertainty (i.e lowest aleatoric con-
�dence). This approach assures that we are removing the samples that are most likely to be
mislabeled and do not �t within the distribution of predicted probabilities in the latent space.
Finally, we train a new model on the �ltered dataset, and we evaluate its performance on vali-
dation.

We can summarize this pipeline as follows:
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4 Uncertainty Estimation with Posterior Network

1. Train a PostNet model for uncertainty prediction, to minimize the Brier Score on validation.

2. Evaluate the aleatoric uncertainty of each sample in the dataset.

3. Remove the p-% of samples with the highest aleatoric uncertainty.

4. Train a new PostNet model on the �ltered dataset.

Hyperparameter tuning is done at step 1 in order to �nd a calibrated model, as in the previ-
ous section the latent space, the number of radial �ows, the learning rate and weight decay are
examples of the impactful parameter to tune. The percentage of samples to remove is a hyper-
parameter that can be tuned at step 3, using a linear search. In our experiment, we observed
that 10 to 15% of the samples with the highest aleatoric uncertainty were leading to the best
performance on validation.

4.5.3 Results

The results presented in �gure 4.8 show the accuracy achieved by the model on the validation set,
after removing a percentage of the most uncertain samples, evaluated by the PostNet model's
aleatoric uncertainty predictions. The results demonstrate that the proposed pipeline for dataset
�ltering based on uncertainty estimation can improve the model's performance on validation. As
seen from the results, the accuracy on validation varies with the percentage of samples removed,
with the best performance achieved when removing 12% of the most uncertain samples. The
accuracy achieved after removing 12% of the samples was 0.841, which is the highest accuracy
achieved in the experiment.

We applied the pipeline described in the previous section to the IvyGAP dataset, and we eval-
uated the performance of the model on the validation set. We tested di�erent values of p, i.e.,
the percentage of samples with the highest aleatoric uncertainty to be removed from the dataset.
The results of this experiment are summarized in Figure ??.

We observed that, as expected, the accuracy on validation generally improved as we removed
more uncertain samples from the dataset. However, after a certain point, the performance started
to deteriorate, suggesting that we might have removed too many samples from the dataset. In
our experiment, we observed that removing the top 15% of the most uncertain samples led to
the best performance on validation, with an accuracy improvement of up to 1.5 points, as shown
in the following table:

Figure 4.8: Performance of the model on validation for di�erent values of p, i.e., the percentage
of samples with the highest aleatoric uncertainty to be removed from the dataset.
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4.6 Conclusion

These results suggest that the proposed pipeline can be applied to models trained on challenging
datasets to improve their performance. By using a calibrated uncertainty estimator to identify
and remove the most uncertain samples, we can create a cleaner and more reliable training set
for our models. This approach can be especially useful in situations where the dataset is noisy or
has a high degree of label uncertainty. The proposed pipeline can be implemented with relatively
simple steps, making it easy to apply to di�erent models and dtasets. Overall, the results suggest
that uncertainty estimation can be a powerful tool for improving the performance of machine
learning models.

4.6 Conclusion

In this section, we have presented a pipeline for dataset �ltering based on uncertainty estimation.
We have shown that by using a PostNet model to estimate the aleatoric uncertainty of each
sample in the IvyGAP dataset, we can identify and remove the most uncertain samples that
might degrade the performance of our model. We have demonstrated that this approach can
improve the accuracy of our model on validation by up to 1.5 points, compared to using the
original dataset.

Our results indicate that uncertainty estimation can be a useful tool for dataset �ltering and
quality control. By removing the samples with high uncertainty, we can reduce the noise and
ambiguity in the dataset and make it more suitable for training our model. This can potentially
lead to better generalization and robustness of our model on unseen data.

One limitation of our approach is that it relies on a separate PostNet model to estimate the
uncertainty of each sample. This adds an extra computational cost and complexity to our
pipeline. Moreover, the PostNet model itself might not be perfectly calibrated or accurate in
its uncertainty estimates. Future work could explore alternative ways to estimate uncertainty
without using a separate model, such as using dropout or ensembles.

Another limitation of our approach is that it does not take into account the diversity or im-
portance of each sample in the dataset. By removing samples based solely on their uncertainty,
we might lose some valuable information or introduce bias in the dataset. Future work could
incorporate other criteria for selecting samples to remove or keep in the dataset, such as their
similarity to other samples or their relevance to a speci�c task.

In conclusion, we have proposed a novel pipeline for dataset �ltering based on uncertainty esti-
mation. We have applied this pipeline to the IvyGAP dataset and shown that it can improve the
performance of our model on validation. We hope that our work will inspire further research on
using uncertainty estimation for dataset �ltering and quality control.
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5 Conclusion

In this thesis, we have provided a comprehensive overview of the state-of-the-art transformers
method for analyzing high-resolution pathology images. We have discussed the challenges of
applying transformers to medical problems, using the glioblastoma dataset IvyGAP as a case
study.

First, we have introduced in Chapter 1 the datasets of interest: IvyGAP for glioblastoma and
the Renal Cancer Dataset. The former is a large-scale dataset of glioblastoma images that poses
di�culties for analysis due to the heterogeneity of tumor regions and the noisy labels. The
latter is a small dataset of renal cancer images produced by the Yu Lab, where each sample was
captured by a cellphone camera using a microscope.

Second, we have presented in Chapter 2 and motivated the Vision Transformer (ViT) architec-
ture that can capture long-range dependencies between data using an attention mechanism with
reduced computational complexity compared to convolutional-based models. Then, we have pre-
sented Self-Supervised Learning (SSL) methods as a way to learn useful representations from
unlabeled data and focused on DINO, a recently proposed method based on contrastive learning
and distillation. We have shown how this representation can provide a semantic understanding
of the data and how it can be used to pre-train transformers for downstream tasks. In partic-
ular, ViT model pre-trained with DINO on IvyGAP outperformed the model pre-trained with
supervised learning on the same dataset.

Third, we have explored in Chapter 3 how we could �nd insightful regions of interest (ROIs)
within a whole slide image using self-supervised learning, weakly supervised learning and strongly
supervised learning. We have leveraged DINO to pre-train a ViT without the need for la-
bels and obtained ROIs by evaluating the attention map without ground truth. We have
also used gradient-based explainability methods to get insightful relevance maps over a whole
slide image when training a model for multi-class classi�cation. Finally, we have used Tran-
sUNet, a hybrid model that combines ViTs and U-Nets, to �nd ROIs in a whole slide im-
age.

Fourth, we have discussed in Chapter 4 the di�erent methods to estimate the uncertainty of
prediction and labeling in medical image analysis. We have presented the Posterior Network
architecture that allows detecting out-of-distribution (OoD) samples without the need for OoD
dataset during training. Furthermore, we explained how one could calibrate a model for predic-
tion and labeling uncertainty. Finally, we have proposed a novel method to improve con�dence
and accuracy of predictions made on IvyGAP by �ltering out samples with low labeling con�-
dence. This approach is particularly useful for medical image analysis where the labeling process
is often noisy and requires human expertise.

To conclude, this thesis provides a comprehensive overview of the transformers method in analyz-
ing high-resolution pathology images, focusing on the challenges and opportunities of applying
this method to medical problems. Through the case study of IvyGAP, we have shown how
self-supervised learning can be used to pretrain transformers without the need for labeled data
and how to �nd regions of interest within a whole slide image. Moreover, we have presented
methods to estimate the uncertainty of prediction and labeling and proposed a novel method
to improve con�dence and accuracy. We hope that this thesis will inspire further research in
this area and contribute to the development of more accurate and robust medical image analysis
tools.
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